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Abstract

In this paper, a constrained distributed optimal control problem governed by a first-

order elliptic system is considered. Least-squares mixed finite element methods, which

are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for

solving the elliptic system with two unknown state variables. By adopting the Lagrange

multiplier approach, continuous and discrete optimality systems including a primal state

equation, an adjoint state equation, and a variational inequality for the optimal control are

derived, respectively. Both the discrete state equation and discrete adjoint state equation

yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers

such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be

used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the

control function in L2(Ω)-norm, for the original state and adjoint state in H1(Ω)-norm, and

for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical

example to validate the theoretical findings.
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1. Introduction

Optimal control problems governed by partial differential equations (PDEs) are playing an

increasingly important role in modern scientific and engineering applications. Basically, the goal

of optimal control is achieving some desired objective. Nowadays, a variety of finite element

methods are widely used in solving such optimal control problems. Systematic introductions

of the finite element method for PDEs and optimal control problems can be found in, e.g.,

[9, 18,19,23,25].

In this paper, we shall consider the distributed optimal control problem for elliptic equations

via least-squares mixed finite element methods. Let us consider the following second-order

elliptic boundary value problem
−div(A∇y) = f + u, in Ω,

y = 0, on ΓD,

−A∇y · n = 0, on ΓN ,

(1.1)
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where Ω is a bounded domain in R2 with Lipschitz boundary Γ = ΓD ∪ ΓN , such that ΓD is

nonempty and n is the outward unit normal to ΓN .

Introducing the flux σ = −A∇y, we derive the equivalent first-order elliptic system
divσ = f + u, in Ω,

σ +A∇y = 0, in Ω,

y = 0, on ΓD,

σ · n = 0, on ΓN .

(1.2)

In this work, we consider the following type quadratic cost functional

J (y,σ, u) =
1

2

(∫
Ω

(y − yd)
2 +

∫
Ω

(σ − σd)
2 + γ

∫
Ω

u2
)
, (1.3)

over the admissible control set Uad

Uad = {u ∈ L2(Ω) : ξ1 ≤ u ≤ ξ2, a.e. in Ω}, (1.4)

where the bounds ξ1, ξ2 ∈ R fulfill ξ1 < ξ2.

The optimal control problem we considered is to seek optimal state variables y∗ and σ∗, and

optimal control u∗ in the admissible set Uad, such that the functional (1.3) is minimized subject

to problem (1.2), where yd and σd are two given desired states. The positive penalty parameter

γ can be used to change the relative importance of the terms appearing in the definition of

the functional. A precise formulation of this problem including a functional analytic setting is

given in the next section.

Recently, classical mixed finite element methods have been proved effectively for solving

various optimal control problems, see, e.g., [7, 8, 12, 26]. In summary, they have an advantage

of approximating the unknown scaler variable and its diffusive flux simultaneously. Besides,

these methods can approximate the unknown variable and its flux to a same order of accuracy.

However, It is well-known that these methods usually result in typical saddle-point type linear

algebraic systems that are symmetric but indefinite. Although significant progress has been

made in the development of methods for such algebraic systems, their numerical solution is

still challenging and computationally demanding. Furthermore, the spaces used for the approx-

imation of the different unknowns y and σ must satisfy strict Ladyzhenkaya-Babuska-Brezzi

consistency condition.

To circumvent those difficulties appeared in using classical mixed finite element methods,

least-squares mixed finite element method, based on transforming a second-order PDE into

a first-order system, was introduced by Pehlivanov et al. [20], where a least-squares residual

minimization is introduced for the mixed system in unknown variable y and unknown velocity

flux σ. Subsequently, there has been an extensive research of first-order type least-squares mixed

finite element methods for various problems and different definition of minimization functionals,

see, e.g., [4–6,10,11,15,21,22]. It is well known that least-squares mixed finite element methods

have two typical advantages: First, they are not subjected to the Ladyzhenkaya-Babuska-

Brezzi consistency condition, so the choice of finite element spaces becomes flexible. Second,

these methods result in a symmetric and positive definite system, which can be solved using

PCG or AMG solvers quickly.

Least-squares methods to optimal control problems governed by a first-order div-curl elliptic

system was first studied in [13], where a least-squares minimization functional, including both


