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Abstract

This paper deals with fast and reliable numerical solution methods for the incompress-

ible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing

equations, the Picard and Newton methods are used to linearize these coupled partial dif-

ferential equations. For space discretization we use the �nite element method and utilize

the two-by-two block structure of the matrices in the arising algebraic systems of equa-

tions. The Krylov subspace iterative methods are chosen to solve the linearized discrete

systems and the development of computationally and numerically e�cient preconditioners

for the two-by-two block matrices is the main concern in this paper. In non-Newtonian

�ows, the viscosity is not constant and its variation is an important factor that e�ects the

performance of some already known preconditioning techniques. In this paper we examine

the performance of several preconditioners for variable viscosity applications, and improve

them further to be robust with respect to variations in viscosity.
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1. Introduction

Numerical algorithms for incompressible non-Newtonian �ows have been intensively studied

in the past decades. In non-Newtonian �ows the viscosity is not constant and may depend on the

velocity, which leads to two nonlinear sources in the governing equations, i.e., the di�usion and

convection terms. Due to this, the numerical simulation of the incompressible non-Newtonian

�ows is more complicated than Newtonian �ows, where the viscosity is constant and the only

source of nonlinearity in the governing equations is the convection term.

A common approach to solve a nonlinear problem is converting it into a linearized prob-

lem, computing the updates of the unknowns by solving the linearized problem and iteratively

converging to the true nonlinear solutions. If we consider linearization of both the two nonlin-

ear terms, the variable viscosity Oseen-type problem arises. Ignoring the linearization of the

convection term leads to the variable viscosity Stokes-type problem, e.g. [16, 30]. The bene�t
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of solving the Stokes-type problem is that e�cient solution algorithms are easier to construct

compared to the Oseen-type problem. On the other hand, it may take more nonlinear iterations

to converge for the Stokes-type problem, typically when the convection is relatively dominant.

For each type problem, two well-known linearization methods are used, namely, Picard and

Newton iterations. To avoid possible slow convergence rate of Picard iterations and the possi-

bly narrow convergence region of Newton iterations, in this paper a combination of these two

iteration methods is utilised. We �rst carry out some Picard iterations to obtain a reasonably

�good� solution, and then use this solution as an initial guess for the Newton iterations. We

show that in this way a fast convergence of the nonlinear iterations can be achieved.

For the variable viscosity Oseen- and Stokes-type problems with Picard and Newton it-

erations, the �nite element discretization of the linearized problems results in discrete linear

systems of two-by-two block form. Solving the linear systems is the most time-consuming task

in the numerical simulations. In this paper, Krylov subspace methods with appropriate pre-

conditioners are chosen to solve the arising linear systems. The kernel of this paper is the

construction and the analysis of fast and reliable preconditioning techniques for the variable

viscosity Oseen- and Stokes-type problems with both Picard and Newton iterations. As far as

the authors know, in earlier works, e�cient preconditioners for the variable viscosity Oseen-

and Stokes-type problems are only studied for Picard iterations, e.g. [16, 18,30].

In the past decades, the most often used preconditioners for incompressible Navier-Stokes

equations are originally proposed and analysed for the constant viscosity cases, c.f., the surveys

[7,10] and the books [1,14,32]. Due to their algebraic construction, some of these preconditioners

can be straightforwardly utilised for the variable viscosity applications. In this paper we choose

the augmented Lagrangian preconditioner for the Oseen-type problem (Section 3) and the block

lower-triangular and the SIMPLER preconditioners for the Stokes-type problem (Section 4).

As variable viscosity is an important factor, a crucial objective for having a fast and reliable

preconditioner in this case is the robustness with respect to those variations. In order to fully

achieve this objective, we modify the above mentioned preconditioners and also propose some

computational improvements. The comparison between the targeted preconditioners and the

e�ciency of the Oseen- and Stokes-type problems are illustrated in Section 5. Conclusions and

future work are outlined in Section 6.

2. Problem Formulation and Linearization

In this paper, we assume that the velocity u and the pressure p satisfy the following gener-

alized stationary incompressible Navier-Stokes equations:

−∇ · (2ν(DII(u), p)Du) + u · ∇u+∇p = f, in Ω

∇ · u = 0, in Ω
(2.1)

with boundary conditions given by

u = g, on ∂ΩD

ν
∂u

∂n
− np = 0. on ∂ΩN

Here Ω is a bounded and connected domain Ω ⊂ Rd (d = 2, 3), and ∂Ω = ∂ΩD ∪ ∂ΩN is

its boundary, where ∂ΩD and ∂ΩN denote the parts of the boundary where Dirichlet and

Neumann boundary conditions for u are imposed, respectively. The terms f : Ω → Rd and g


