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Abstract

A singularly perturbed one-dimensional convection-diffusion problem is solved numeri-

cally by the finite element method based on higher order polynomials. Numerical solutions

are obtained using S-type meshes with special emphasis on meshes which are graded (based

on a mesh generating function) in the fine mesh region. Error estimates in the ε-weighted

energy norm are proved. We derive an ‘optimal’ mesh generating function in order to min-

imize the constant in the error estimate. Two layer-adapted meshes defined by a recursive

formulae in the fine mesh region are also considered and a new technique for proving er-

ror estimates for these meshes is presented. The aim of the paper is to emphasize the

importance of using optimal meshes for higher order finite element methods. Numerical

experiments support all theoretical results.
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1. Introduction

We consider the singularly perturbed boundary value problem

−εu′′ − b(x)u′ + c(x)u = f(x), u(0) = u(1) = 0, (1.1)

where 0 < ε << 1, b(x) > 1 for x ∈ [0, 1] (we avoid some additional parameter β from the

assumption b(x) > β > 0). Let the functions b, c, f be sufficiently smooth. Because (1.1) is

characterized by a boundary layer at x = 0, the Galerkin finite element method on a standard

mesh works unsatisfactory. Therefore 20 years ago exponentialy fitted splines attracted many

researchers (see Section 2.2.5 in Part I of [10]). But later it turned out that standard splines

on layer-adapted meshes were better. Today layer adapted meshes are the main ingredient in

handling problems with boundary or interior layers.

The first, uniformly with respect to ε, convergence result for linear finite elements on a

Shishkin mesh in the ε-weighted H1- norm was proved in [12] (for the precise definition of
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norms and meshes see Section 2). That mesh is equidistant and fine in a small interval [0, τ ],

where the choice of τ = τ0ε lnN is important, and equidistant but coarse in the large subinterval

[τ, 1] with a mesh size of order O(N−1). The resulting error estimate

‖u− uN‖ε ≤ C(N−1 lnN)

(by C we denote a generic constant independent of ε) is not optimal due to the logarithmic

factor.

In [7] the authors introduced the class of S-type meshes, where in the fine subinterval [0, τ ]

the mesh is not necessarily equidistant but graded based on a mesh generating function. Then,

for certain mesh generating functions the optimal estimate

‖u− uN‖ε ≤ CN−1

follows. While for linear elements the influence of the logarithmic factor is not that large, the

expressions (N−1 lnN)k and N−k differ significantly for larger k. Therefore, for higher order

finite element methods it is important to use a graded mesh and not a piecewise equidistant

mesh. In Section 2 we generalize the results of [7] and prove for finite elements based on

polynomials of order k

‖u− uN‖ε ≤ C(N−1 max |ψ′|)k.

Here ψ is the so-called mesh characterizing function. For some meshes (for instance, Bakhvalov-

Shishkin or Vulanović meshes) it follows

‖u− uN‖ε ≤ CN−k.

In Section 3 we use some heuristic arguments to optimize the mesh generating function, i.e. to

minimize the constant in the error estimate. Although the analysis is incomplete the numerical

results in Section 5 confirm the nice properties of the ‘optimal’ mesh generating function.

Layer-adaptedmeshes can also be defined by a recursive formula. Examples are the Gartland-

Shishkin meshes [9] or meshes analysed in [2]. We modify these meshes and use the recursive

formula only in the subinterval [0, τ̃ ], where τ̃ is the smallest mesh point not smaller than τ

generated by the recursive formula for the mesh points. In Section 4 we present a new technique

to prove error estimates for these meshes. Finally, in Section 5 we present a detailed numerical

study for the comparison of all these meshes, especially for the polynomials of degree k = 2, 3.

The numerical results confirm the obtained estimates and demonstrate the important role of

Bakhvalov-Shiskin and Gartland-Shishkin meshes.

2. S-type Meshes Based on Mesh Generating Functions

It is well known that for the problem (1.1) with smooth data the following solution decom-

position into a smooth part S, and a layer part E exists [10]:

u = S + E,

with

|S(k)| ≤ C, |E(k)| ≤ Cε−ke−x/ε k = 0, 1, . . . , q (for any prescribed q). (2.1)

On a given mesh 0 = x0 < x1 < · · · < xN−1 < xN = 1, we denote by V N the finite element

space of continuous piecewise polynomials of degree k. The weak formulation of (1.1) is based

on the bilinear form

a(w, v) := ε(w′, v′) + (−bw′ + cw, v) (2.2)


