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Abstract

We consider the numerical solution by finite difference methods of the heat equation

in one space dimension, with a nonlocal integral boundary condition, resulting from the

truncation to a finite interval of the problem on a semi-infinite interval. We first analyze

the forward Euler method, and then the θ−method for 0 < θ ≤ 1, in both cases in

maximum-norm, showing O(h2 + k) error bounds, where h is the mesh-width and k the

time step. We then give an alternative analysis for the case θ = 1/2, the Crank-Nicolson

method, using energy arguments, yielding a O(h2 + k3/2) error bound. Special attention

is given the approximation of the boundary integral operator. Our results are illustrated

by numerical examples.
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1. Introduction

We are concerned with the numerical solution of the parabolic problem on a semi-infinite

interval,

ut = uxx + f(x, t), for x ≥ 0, t > 0, (1.1a)

u(0, t) = b(t), for t > 0, (1.1b)

u(x, 0) = v(x), for x ≥ 0, (1.1c)

u→ 0, for x→ +∞, (1.1d)

where f(x, t) and v(x) vanish outside a finite interval in x, which in the sequel we normalize

to be [0, 1). To be able to use finite difference or finite element methods for this problem, it

is useful to truncate it to this finite spatial interval. This necessitates setting up a boundary

condition at the right hand endpoint of the interval, x = 1, usually referred to as an artificial

boundary condition (abc). Han and Huang [3] have recently proposed such an abc for (1.1)
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resulting in the initial-boundary value problem

ut = uxx + f(x, t), for x ∈ (0, 1), t > 0 (1.2a)

u(0, t) = b(t), for t > 0, (1.2b)

ux(1, t) +Gu(1, t) = g(t), for t > 0, (1.2c)

u(x, 0) = v(x), for x ∈ (0, 1), (1.2d)

with g(t) = 0, where Gu may be thought of as a fractional derivative of order 1
2 of u, cf. [8], or

Gu(t) = Jut(t), where Jw(t) =
1√
π

∫ t

0

w(s)√
t− s

ds. (1.3)

The function g(t) will be included below for the purpose of our analysis.

To derive this abc at x = 1, we set b1(t) = u(1, t), with u the solution of (1.1), and note

that u also solves

ut = uxx, for x ≥ 1, t > 0,

u(1, t) = b1(t), for t > 0, and u(x, 0) = 0, for x ≥ 1.

Using Laplace transformation one shows that the solution of this problem is

u(x, t) =
x− 1

2
√
π

∫ t

0

(t− s)−3/2b1(s)e
−(x−1)2/(4(t−s)) ds, for x > 1, t > 0.

From this one finds, after some calculation, that

ux(1, t) = − 1√
π

∫ t

0

(t− s)−1/2b′1(s) ds = −Jut(1, t), for t > 0,

and hence that the boundary condition at x = 1 in (1.2) holds. Although [3] does not conatin

any error analysis, the authors demonstrated the effectiveness of this abc by numerical com-

putation. Recently Wu and Sun [7] have analyzed this abc for a slightly more complicated

difference scheme than the Crank-Nicolson one, and Zheng [8] employs the same condition for

the time discretized heat equation using the Z transform. For a technique that does not trun-

cate the domain, see Li and Greengard [4]. Tsynkov [6] contains a survey of numerical solution

on infinite domains.

Our purpose here is to analyze the solution of the truncated problem (1.2) by finite differ-

ences, using the θ-method, for 0 ≤ θ ≤ 1. For θ = 0 this reduces to the explicit forward Euler

method, and for θ > 0 the method is implicit, with the backward Euler method corresponding

to θ = 1, and the Crank-Nicolson method to θ = 1
2 .

We use the spatial grid xm = mh,m = 0, 1, . . .M +1, with h = 1/M ′, whereM is a positive

integer and M ′ = M + 1
2 , thus also using the grid point xM+1 = 1 + 1

2h to the right of the

right hand boundary, but with no gridpoint at x = 1. The step size in time is denoted by k,

with the corresponding time levels tn = nk. We denote by Un
m the difference approximation of

u(xm, tn) and introduce the forward and backward difference quotients in space and time by

∂xU
n
m =

Un
m+1 − Un

m

h
, ∂̄xU

n
m =

Un
m − Un

m−1

h
,

∂tU
n
m =

Un+1
m − Un

m

k
, ∂̄tU

n
m =

Un
m − Un−1

m

k
.


