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Abstract

In this paper, using a bubble function, we construct a cuboid element to solve the

fourth order elliptic singular perturbation problem in three dimensions. We prove that the

nonconforming C
0-cuboid element converges in the energy norm uniformly with respect to

the perturbation parameter.
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1. Introduction

Let Ω ⊂ R3 be a bounded polyhedral domain with boundary ∂Ω. For f ∈ L2(Ω), we consider

finite element methods for the following boundary value problem of fourth order elliptic singular

perturbation equation:










ε2∆2u−∆u = f, in Ω,

u =
∂u

∂n
= 0, on ∂Ω.

(1.1)

where ∆ is the standard Laplace operator, ∂u/∂n denotes the outer normal derivative on ∂Ω

and ε is a small real parameter with 0 < ε ≤ 1. This problem can be considered a gross

simplification of the stationary Cahn-Hilliard equation with ε being the length of the transition

region of phase separation. In particular, we are interested in the regime when ε tends to zero.

Obviously, if ε approaches zero, the differential Eq. (1.1) formally degenerates to Poisson’s

equation.

For ε=1, that is, the usual fourth order elliptic equation, many works have been done. When

a conforming finite element is used, it should consist of piecewise polynomials that are globally

continuously differentiable (C1). Such elements require polynomials of high degree and even in

two dimensions are not easy to construct. To lower the polynomial degree, some macroelements

were created on triangle grids, see e.g., [1, 2]. Recently, a macro type of biquadratic C1 finite

element was constructed on rectangle grids [3, 4], which is a rectangular version of the (C1)

Powell-Sabin element [1]. On the other hand, many lower degree nonconforming elements in

the two and three dimensional cases have been constructed and used in practice.
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For the fourth order elliptic singular perturbation problem (1.1), the Morley element is a

nature choice for the biharmonic operator since it has the least number of degrees of freedom on

each element for fourth order problems [5]. Unfortunately, this element is divergent for general

second order elliptic problems [2,6-8], so we can not get the uniformly convergent result as ε → 0

as was shown in [6]. As a result, in order to obtain robust schemes, either the formulation of the

Morley element method must be modified or the element itself must be changed, and several

variants of the Morley element method have been presented [6, 9, 10].

In the two-dimensional case, a nonconforming C0 triangular element was constructed in [6],

by enriching second degree polynomials with cubic bubble function. A modified triangular

Morley element and a modified rectangular Morley element were presented in [9]. In that paper,

the authors used the original Morley element and changed the discrete variational problem. An

C0 rectangular element was constructed in [10]. A nine parameter non-C0 triangular element

and a twelve parameter non-C0 rectangular element were proposed in [11] by the double set

parameter technique. Later, by the same technique, a nine parameter C0 triangular element

was analyzed in [12] and a non-C0 rectangular element was constructed in [13], but the later

paper was solving problem (1.1) but with boundary conditions u = ∂2u/∂n2 = 0. All of these

nonconforming elements were proved to be uniformly convergent.

In the three-dimensional case. A nonconforming non-C0 tetrahedral element was con-

structed and analyzed in [14] by the similar way used in [9], and a nonconforming C0 tetrahedral

element was constructed in [15]. Recently, a nonconforming C0 tetrahedral element was con-

structed in [16] by Nitsche’s method. In this paper, we introduce an C0 cuboid element, which

was constructed in [17] by us, but the error estimate was valid only for ε = 1. Here, we prove

that the element is robust with respect to the perturbation parameter and uniforming conver-

gent to order h1/2. Moreover, besides the theoretical interest, our new finite element method

is expected to be useful in the computation of the Cahn-Hilliard equation.

The rest of this paper is organized as follows. In the following section, we list some nota-

tions and two basic preliminaries. Next, we give detailed descriptions of the cuboid element.

Finally, we prove the element is uniformly convergent in ε for the fourth order elliptic singular

perturbation equation.

2. Preliminaries

For a nonnegative integer m, we shall use the standard notation Hm(Ω) to denote the

Sobolev space of functions with partial derivatives up to m in L2(Ω). The corresponding norm

and semi-norm are denoted by ‖·‖m,Ω and | · |m,Ω, respectively. The space H
m
0 (Ω) is the closure

in Hm(Ω) of C∞
0 (Ω) with respect to the norm ‖ · ‖m,Ω and (·, ·) denotes the inner product of

L2(Ω). Pk is the polynomial space of degree not greater than k and Qk is the polynomial space

of degree in each coordinate not greater than k.

Define

a(u, v) =

∫

Ω

3
∑

i,j=1

∂iju∂ijvdx, ∀u, v ∈ H2(Ω), (2.1)

b(u, v) =

∫

Ω

3
∑

i=1

∂iu∂ivdx, ∀u, v ∈ H1(Ω). (2.2)

The weak form of (1.1) is: find u ∈ H2
0 (Ω) such that

ε2a(u, v) + b(u, v) = f(v), ∀v ∈ H2
0 (Ω). (2.3)


