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Abstract

In this work, we focus on designing efficient numerical schemes to approximate a ther-

modynamically consistent Navier-Stokes/Cahn-Hilliard problem given in [3] modeling the

mixture of two incompressible fluids with different densities. The model is based on a

diffuse-interface phase-field approach that is able to describe topological transitions like

droplet coalescense or droplet break-up in a natural way. We present a splitting scheme,

decoupling computations of the Navier-Stokes part from the Cahn-Hilliard one, which is

unconditionally energy-stable up to the choice of the potential approximation. Some nu-

merical experiments are carried out to validate the correctness and the accuracy of the

scheme, and to study the sensitivity of the scheme with respect to different physical pa-

rameters.
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1. Introduction

The evolution in time of the interface of two or more immiscible fluids arise naturally in

hydrodynamics and materials science for modeling many current scientific, engineering, and

industrial applications.

In recent times, the diffuse-interface approach has been used to describe the dynamic of

the interfaces by layers of small thickness. One fundamental advantage of these models is that

they are able to describe topological transitions like droplet coalescense or droplet break-up in

a natural way.

The diffuse-interface theory was originally developed as methodology for modeling and ap-

proximating solid-liquid phase transitions. This idea can be traced to van der Waals [25], and

is the foundation for the phase-field theory for phase transition and critical phenomena. Thus,
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the structure of the interface is determined by molecular forces; the tendencies for mixing and

de-mixing are balanced through a non-local mixing energy.

Hohenberg and Halperin presented in [19] the so-called Model H, in order to model two

incompressible, viscous Newtonian fluids with the same density. In [18], Gurtin et al. arrived

at the same model by using the rational continuum mechanics framework and showed that

it satisfies the second law of thermodynamics, leading in both cases to the so-called Navier-

Stokes/Cahn-Hilliard system (NSCH).

There are many works devoted to study numerical schemes to approximate NSCH model

that in the most of cases consists on coupling schemes previously presented for Navier-Stokes

(see for instance [12]) and Cahn-Hilliard system [8–10]. In [22], the author study numerically

a NSCH model (for the case of three phases) presenting a splitting and unconditionally stable

scheme (satisfying a discrete energy law).

In the last years, many authors have been concerned in designing models to describe the

flow of two incompressible, viscous Newtonian fluids with different densities. Lowengrub and

Truskinovsky derived in [21] a thermodynamically consistent extension of the NSCH model

with different densities but in this case the velocity field is no longer divergence free, leading

to new difficulties to design fully discrete numerical schemes. Recently, Abels has discussed

in [1] about the existence of local in time strong solutions of the system derived in [21]. A new

related approach has been presented in [24] where mass and volume conservation is obtained for

binary fluids and some splitting numerical schemes are proposed, although no discrete energy

laws satisfied by the schemes are provided.

In [4], Boyer gives the complete derivation and a numerical approach of a model for the

study of incompressible two-fluids mixture with different densities and viscosities, although no

energy law of the system is presented.

There is also an increasing interest in more general models that are able to capture the

mixture of different complex fluids. We refer the reader to [26] for a general formulation using

the diffuse-interface method, to [7] for energy stable schemes for the Cahn-Hilliard-Brinkman

equation and to [6] for energy stable schemes for anisotropic Cahn-Hilliard systems.

On the other hand, Shen and Yang presented in [23] a model and numerical approximations

for two-phase incompressible flows with different densities and viscosities. In [27], Zhang and

Wang present a study of the influence of the mobility term in a model of two-phase incompress-

ible flows with different densities but no physical background of the derivation of the model

is presented or cited. Finally, Abels et al. derived in [3] a new thermodynamically consistent

model for incompressible two-phase flows with different densities while in [2] the existence of

weak solutions for this model is proved. For a recent review in multi-component mixtures using

phase field models we refer the reader to [20].

In this work, we present an unconditionally energy-stable and splitting scheme to approxi-

mate the model derived by Abels et al. in [3], showing its validity by several numerical simu-

lations. In fact, the scheme decouples computations of the Navier-Stokes part from the Cahn-

Hilliard one, and it is unconditionally energy-stable up to the choice of the potential approxi-

mation.

The rest of the paper is organized as follows. In Section 2, we detail the model considered

and its energy law. The splitting numerical scheme and its energy-stability are derived in

Section 3. In Section 4 we present some 2D and 3D numerical simulations and we state some

conclusions in Section 5. Finally, the well-posedness of the scheme is proved in an Appendix.


