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Abstract

In this paper, we study a weakly over-penalized interior penalty method for non-self-

adjoint and indefinite problems. An optimal a priori error estimate in the energy norm

is derived. In addition, we introduce a residual-based a posteriori error estimator, which

is proved to be both reliable and efficient in the energy norm. Some numerical testes are

presented to validate our theoretical analysis.
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1. Introduction

We are devoted to studying a weakly over-penalized interior penalty (WOPIP) method [7]

for the following non-self-adjoint and indefinite problems

−∇ · (a∇u) + b · ∇u + cu = f, in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω ⊂ R2 is a bounded polygonal domain with boundary ∂Ω. Here we assume that the

data of (1.1), i.e., D = (a,b, c) satisfy the following property:

1. There exists a0 > 0 such that 0 < a0 < a and c ≥ 0;

2. a ∈ W 1
∞(Ω), b ∈

(

L∞(Ω)
)2

and c ∈ L∞(Ω) with

M = max{||a||L∞(Ω), ||b||L∞(Ω), ||c||L∞(Ω)};

3. f ∈ L2(Ω).

The WOPIP method belongs to a class of discontinuous Galerkin (DG) methods, which was

first proposed in [7] by Brenner et al. to solve second order elliptic equations. DG methods
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for elliptic problems have been initially proposed in [2, 31] in the 1970s-1980s. In recent years

they have gained much interest due to their suitability for hp-adaptive techniques, flexibility

in handling inhomogeneous boundary conditions and curved boundaries, and their flexibility

in handling highly nonuniform and unstructured meshes. The reader is referred to [14] for

applications of these methods for a wide variety of problems, and to [3] for an over review

of these methods for elliptic problems and their a priori error analysis. For more details of

the a priori error estimates for second elliptic problems, please refer to [23]. For the theory

of a posteriori error bounds for DG methods, the residual-based error estimators measured

in mesh-dependent energy norms have been presented in [5, 19, 20, 22, 24], and further been

studied in [1, 33]. Some other work on the a posteriori error estimates of DG methods can be

found in [15, 26, 28, 29]. For the WOPIP method for second order equations, its a priori error

estimate was provided in [7], where some advantages of this method were also discussed, e.g.,

compared with many well-known DG methods presented in [3], the WOPIP method has less

computational complexity and is easy to implement. Subsequently, a residual-based posteriori

error estimator was presented in [8]. More applications of the WOPIP methods are to use them

to solve the biharmonic problem [9] and Stokes equations [4].

The non-self-adjoint and indefinite problems (1.1) often appear in dealing with flow in porous

media. To the best of our knowledge, there exists no work on the a posteriori error estimates of

DG methods for non-self-adjoint and indefinite problems. The main objective of this paper is

to give a residual-based error estimator of the WOPIP DG method for (1.1). In this case, two

main difficulties should be overcome, one arises from the effect of a nonsymmetric and indefinite

bilinear form, the other stems from the nonconformity of the WOPIP DG method.

The rest of our paper is organized as follows. We introduce some notations and recall the

WOPIP method in Section 2. An optimal a priori error estimate of the WOPIP method in

the energy norm is provided in Section 3. A residual-based a posteriori error estimator of the

WOPIP method is presented in Section 4. Moreover, both the upper bound and lower bound of

the error estimator are proved in the energy norm. Finally, some numerical experiments which

validate our theoretical results are given in Section 5.

2. Preliminaries and Notations

For a bounded domain D in R2, we denote by Hs(D) the standard Sobolev space of functions

with regularity exponent s ≥ 0, associated with norm || · ||s,D and seminorm | · |s,D. When s = 0,

H0(D) can be written by L2(D). When D = Ω, the norm || · ||s,Ω is simply written by || · ||s.

Hs
0(D) is the subspace of Hs(D) with vanishing trace on ∂D.

Let Th be a regular decompositions of Ω into triangles {T }, hT denotes the diameter of T

and h = max
T∈Th

hT . Denote ε0h by the set of interior edges of elements in Th, and ε
∂
h by the set

of boundary edges. Set εh = ε0h ∪ ε
∂
h. The length of any edge e ∈ εh is denoted by he. Further,

we associate a fixed unit normal n with each edge e ∈ εh such that for edges on the boundary

∂Ω, n is the exterior unit normal.

Let e be an interior edge in ε0h shared by elements T1 and T2. For a scalar piecewise smooth

function ϕ, with ϕi = ϕ|Ti
, we define the following jump by

JϕK = ϕ1 − ϕ2, on e ∈ ε0h.

For a boundary edge e ∈ ε∂h, we set

JϕK = ϕ.


