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Abstract

In this paper, we present a parallel quasi-Chebyshev acceleration applied to the nonover-

lapping multisplitting iterative method for the linear systems when the coefficient matrix is

either an H-matrix or a symmetric positive definite matrix. First, m parallel iterations are

implemented in m different processors. Second, based on l1-norm or l2-norm, the m opti-

mization models are parallelly treated in m different processors. The convergence theories

are established for the parallel quasi-Chebyshev accelerated method. Finally, the numeri-

cal examples show that the parallel quasi-Chebyshev technique can significantly accelerate

the nonoverlapping multisplitting iterative method.
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1. Introduction and Preliminaries

A multisplitting of a nonsingular matrix A ∈ Rn×n, as introduced in [12], is a collection of

triples of n× n matrices (Mi, Ni, Ei)
m
i=1(m ≤ n, a positive integer) with

• A = Mi −Ni, i = 1, · · · ,m;

• Mi nonsingular, i = 1, · · · ,m;

• for i = 1, · · · ,m, the weighting matrices Ei = diag(e
(i)
1 , · · · , e

(i)
n ) being diagonal with

nonnegative entries

e
(i)
j =

{

e
(i)
j > 0, for j ∈ Ni,

0, for j 6∈ Ni,
j = 1, · · · , n,
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such that
∑m

i=1 Ei = I (the n × n identity matrix), where Ni, i = 1, · · · ,m are nonempty

subsets of N ,N = {1, · · · , n} satisfying N =
⋃m

i=1 Ni, see also [4]. Then the (parallel linear)

multisplitting iterative method for solving the linear system of equations

Ax = b (1.1)

is

Mix
(k)
i = Nix

(k−1) + b, i = 1, · · · ,m; k = 1, · · · , (1.2)

x(k) =

m
∑

i=1

Eix
(k)
i . (1.3)

In particular, the above method is called a nonoverlapping multisplitting iterative method

if Ni1 ∩ Ni2 = ∅ (i1 6= i2).

Subsequently, many authors studied the above technique for the cases where A is an M -

matrix, an H-matrix or a symmetric positive definite matrix respectively, we refer to [1,4,6,9,

11,13,17] and the references therein. The idea of minimizing the norm of either the error or

the residual so that the numerically optimal value of the iteration parameter is determined,

first introduced in [2], used to compute a numerically optimal relaxation parameter for the

successive overrelaxation (SOR) iteration methods for solving the system of linear equations.

Based on the standard quadratic programming technique, the authors of this paper and their

collaborators [14,15] seem to be the first to introduce the auto-optimal weighting matrices

E
(k)
i , i = 1, · · · ,m; k = 1, · · · for parallel multisplitting iterative methods. The self-adaptive

weighting matrices enable more approximate to the exact solution for k-step iteration. These

methods, however, just as introduced in [14] and [15], only one processor of the multiprocessor

system to compute the global optimization model at every iteration step, the other m− 1 pro-

cessors must be in the waiting state until one of all these processors has finished its optimization

task.

As is well known, one of the best accelerated methods is the Chebyshev semi-iteration, in

which the optimum parameter ω is obtained by the Chebyshev polynomial. The one most recent

result may be found the quasi-Chebyshev accelerated (QCA) method to convergent splitting

iteration proposed in [16]. The method is, in spirit, analogous to the Chebyshev semi-iteration

but the optimum parameter ω is generated by optimization model for solving the linear sys-

tems. These motivated us to accelerate the parallel multisplitting iterative method, resulting

in a parallel quasi-Chebyshev accelerated (abbreviated as PQCA) method to the nonoverlap-

ping multisplitting iterative method for the linear systems when the coefficient matrices are

H-matrices or symmetric positive definite matrices. To make full use of the efficiency of a mul-

tiprocessor system and overcome the drawbacks of those methods in [14,15], we further divide

the global optimization model into m sub-models and hence, the parallel computing is achieved

in this paper.

The PQCA method determines the optimum parameters α(i), i = 1, · · · ,m through mini-

mizing either the l2-norm of the residual when the coefficient matrix of (1.1) is a symmetric

positive definite matrix, or the l1-norm of the residual when the coefficient matrix of (1.1) is

an H-matrix, at each step of their iterates, at each processor of multiprocessor system, with a

reasonably extra cost. In actual computations, that shows better numerical behaviors than the

Method in [9] for both the symmetric positive definite matrix and the H-matrix. Numerical

experiments show that the new PQCA method is feasible, efficient and robust for solving large

sparse system of linear equations (1.1).


