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Abstract

Recently numerous numerical experiments on realistic calculation have shown that

the conjugate A-orthogonal residual squared (CORS) method is often competitive with

other popular methods. However, the CORS method, like the CGS method, shows irreg-

ular convergence, especially appears large intermediate residual norm, which may lead to

worse approximate solutions and slower convergence rate. In this paper, we present a new

product-type method for solving complex non-Hermitian linear systems based on the bicon-

jugate A-orthogonal residual (BiCOR) method, where one of the polynomials is a BiCOR

polynomial, and the other is a BiCOR polynomial with the same degree corresponding to

different initial residual. Numerical examples are given to illustrate the effectiveness of the

proposed method.
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1. Introduction

Some science and engineering applications, for instance in discretizing Helmhlotz and Maxwell

equations, require the solution of large linear systems

Ax = b, (1.1)

where A is an N ×N complex non-Hermitian matrix and N is large.

In recent years, there have been many advances in Krylov subspace methods for solution of

complex non-Hermitian linear systems, see, e.g., [1]. If storage requirement is not considered, the

generalized minimal residual (GMRES) method [2] and its variant flexible GMRES (FGMRES)

[3] are popular options due to their robustness and smooth convergence, see [4]. In terms of

cheaper memory demanding, some of the short-recurrence methods based on Bi-Lanczos process

are effective and competitive. The archetype of this class is the BiCG [5] method proposed by
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Fletcher. However, the BiCG method requires the transpose of matrix, suffers from breakdown

and converges irregularly. In order to avoid the transpose of matrix, Sonneveld developed

the CGS [6] method by making use of the “wasted” extra matrix-vector multiplication. To

overcome the erratic residual norms of the CGS method, van der Vorst derived the BiCGSTAB

[7] method by incorporating linear minimal residual step at each iteration. Gutknecht, Sleijpen

and Fokkema generalized this method to the BiCGSTAB2 [8] and BiCGSTAB(l) [9] methods,

respectively. Zhang proposed the generalized product-type of the BiCG (GPBiCG) [10] method

and provided a way to show the CGS, BiCGSTAB, BiCGSTAB2 and GPBiCG methods fit into

a more general framework. ML(k)BiCGSTAB method [11] is also a BiCGSTAB variant based

on multiple left Lanczos starting vectors. In [12], Freund considered an alternative approach

and devised the TFQMR method by combining the CGS idea with quasi-minimal residual

technique proposed in the QMR [13] method. However, they require many more iterations for

some realistic problems [14] compared with the GMRES method.

Recently, Jing et al. [15,16] developed the BiCOR, CORS and BiCORSTAB methods for

solving complex non-Hermitian linear system based on the biconjugate A-orthonormalization

process, which are also considered as Lanczos-type variants of the conjugate A-orthogonal con-

jugate residual (COCR) method [17]. Note that an implementation of BiCOR-type methods

can be constructed from any BiCG-type method by a formal B-inner product 〈ỹ, y〉B = 〈ỹ, By〉

instead of the standard Hermitian inner product 〈ỹ, y〉. The choice of B = A can lead to the

BiCOR-type methods, see [18] for more details. As observed from different numerical exper-

iments on some practical physical problems, including radar cross section (RCS) calculation

from complex structures, acoustics problems, quantum mechanics and so on, these methods

show competitive convergence behavior and are often superior to other Krylov subspaces, see

[19-21] for details. In order to accelerate the convergence rate, Zhao and Huang [22] proposed

the BiCORSTAB2 method. Under an unified generalized framwork, Zhao and Huang et al. de-

duced the generalized product-type BiCOR (GPBiCOR) method [23]. Numerical experiments

from signal deconvolution show that the GPBiCOR method is effective.

The CORS method is more efficient than the restarted GMRES method on most selected

examples, especially coming from realistic RCS calculation [16,21]. However, similarly to the

CGS method [6], the CORS method often shows irregular convergence behavior and produces

large intermediate residual during the iteration process, which badly affects its convergence

rate and accuracy of approximate solutions. Inspired by the generalized CGS (GCGS) method

[24], we develop a generalized CORS (GCORS) method which is a new product-type method

based on the BiCOR method, where polynomial is products of two nearby BiCOR polynomials.

Numerical examples show that this approach may lead to faster convergence as well as to

more accurate results. We also show that the CORS and BiCORSTAB methods fit into the

framework of the GCORS method.

The remainder of the paper is organized as follows. In Section 2, we give a brief description

of the BiCOR method and its properties. The generalized CORS (GCORS) method is derived

in Section 3. In Section 4, we present an efficient implementation of the GCORS method,

which we will call the generalized CORS2 (GCORS2) method. Finally, numerical experiments

are given in Section 5.

Throughout this paper, we use the follow notations. Let the overbar “-” denote the conjugate

complex of a scalar, vector or matrix, ZT and ZH denote the transpose and the conjugate

transpose of a vector or matrix Z, respectively. Pm denotes the set of complex polynomials

pm(t) of degree m with scalar coefficients satisfying pm(0) = 1. The inner product of two


