
Journal of Computational Mathematics

Vol.32, No.1, 2014, 1–20.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1310-m3942

STABILITY FOR IMPOSING ABSORBING BOUNDARY
CONDITIONS IN THE FINITE ELEMENT SIMULATION OF

ACOUSTIC WAVE PROPAGATION*

Wensheng Zhang

LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Beijing 100190, China

Email: zws@lsec.cc.ac.cn

Eric T. Chung

Department of Mathematics, The Chinese University of Hong Kong, Hong Kong, China

Email: tschung@math.cuhk.edu.hk

Chaowei Wang

ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing

100190, China

Email: wangcw@lsec.cc.ac.cn

Abstract

It is well-known that artificial boundary conditions are crucial for the efficient and ac-

curate computations of wavefields on unbounded domains. In this paper, we investigate

stability analysis for the wave equation coupled with the first and the second order ab-

sorbing boundary conditions. The computational scheme is also developed. The approach

allows the absorbing boundary conditions to be naturally imposed, which makes it easier

for us to construct high order schemes for the absorbing boundary conditions. A third-

order Lagrange finite element method with mass lumping is applied to obtain the spatial

discretization of the wave equation. The resulting scheme is stable and is very efficient

since no matrix inversion is needed at each time step. Moreover, we have shown both ab-

stract and explicit conditional stability results for the fully-discrete schemes. The results

are helpful for designing computational parameters in computations. Numerical compu-

tations are illustrated to show the efficiency and accuracy of our method. In particular,

essentially no boundary reflection is seen at the artificial boundaries.
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1. Introduction

Modeling the propagation of seismic waves is a useful step in the interpretation of wave

phenomena in complex media. It is also an essential step for inverse problem in seismic ex-

ploration. Several kinds of techniques for wave modeling have been developed. These include

the finite volume method ([13, 49]), the finite difference method ([2, 20, 32, 43, 52, 53]), the

spectral method ([6, 30, 31]), the spectral element method ([28, 29]), the finite element method

([17, 18, 33]) and the discontinuous Galerkin methods ([9, 10, 12, 14, 15]).

The finite difference method is a popular numerical technique because it is relatively easy to

implement and has high computational efficiency. The wave modeling with the finite difference
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method in seismology was realized early in 70s ([2]). Since then, various finite difference schemes

for wave modeling are proposed. For example, Dablain [20] proposed the high-order difference

schemes. Virieux [43] investigated the stagger-grid difference scheme which has some advantages

in physical aspects. Sei [36] generalized a family of high order finite difference schemes for

the computation of elastic waves. Zhang et al. [52] proposed a new high accuracy locally

one-dimensional scheme for the wave equation. The spectral element method was introduced

firstly in computational fluid dynamic ([35]). It have been successfully applied to seismic wave

simulation ([28, 29]). However, its computational mesh is usually quadrilateral grid in 2D case

or hexahedral in 3D case.

The finite element method (FEM) especially the triangular element has a distinctive advan-

tage of being able to handle problems with complex domains. Thus, the FEM has a potential

and room for development in seismic wave simulations. However, the high order FEM is still

not widely used in the simulation of seismic waves and the main reason is that it requires the

inversion of the mass matrix at each extrapolation time step. This implies that the FEM has

very low computational efficiency especially when many extrapolation time steps are required.

The advantage of FEM is its good adaptability to various velocity models with high complexity.

Finite elements with simplices fit better the polygonal shaped domains and sharp contrasts in

velocity models. The FEM requires the solution of a large sparse linear system of equations,

which makes the method costly. This cost can be avoided by mass lumping ([54]), a technique

that replaces the large linear system by a diagonal matrix. For the low order methods such

as the linear Lagrange element, the mass lumping can be implemented by using the quadratic

rules for numerical integration. But it is not obvious how mass lumping is implemented for

high order methods such as the quadratic Lagrange element. As high order accuracy is desired

in wave simulation, we will adopt the third-order Lagrange element in our computations which

preserves the accuracy and at the same time allows mass lumping ([17, 18]).

In numerical simulation of wave propagation, the imposition of artificial boundary introduces

spurious reflections which will devastate the accuracy of numerical solutions. Although the

problem can be overcome by increasing the size of the computational domain, it is not always

feasible because it increases the amount of computations. In order to eliminate the boundary

reflections, absorbing boundary conditions are desirable in wave modeling. There are several

kinds of absorbing boundary conditions (ABCs) (see e.g., [5, 7, 14–16, 22, 25, 26, 37]). Smith [37]

proposed a nonreflection plane boundary, which is easily implemented for finite difference and

finite element calculations. Clayton and Engquist [16] proposed the ABCs based on the paraxial

approximations of the acoustic or elastic equations. Another approach is to add damping layer

to the boundaries ([7]). The waves entering this damping layer will be absorbed. The perfectly

matched layer (PML) method is based on the use of an absorbing layer especially designed

to absorb without reflection waves ([5]). These ABCs have been widely used in the finite

difference method. Chung (et al., [14, 15]) considered the ABCs in wave simulation with

the optimal discontinuous Galerkin methods. In this paper, we focus on stability analysis for

implementing the ABCs with the high order Lagrange finite element. The computational scheme

is also developed. The ABCs based on the factorization of wave equation are reviewed and the

variational framework, which imposes the ABCs weakly, is derived. The spatial discretization of

the weak form of wave equation including the embedded boundary conditions has high spatial

accuracy. Moreover, we obtain and prove new abstract and explicit stability conditions for the

proposed computational scheme.


