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Abstract

This paper deals with a monotone weighted average iterative method for solving semi-

linear singularly perturbed parabolic problems. Monotone sequences, based on the ac-

celerated monotone iterative method, are constructed for a nonlinear difference scheme

which approximates the semilinear parabolic problem. This monotone convergence leads

to the existence-uniqueness theorem. An analysis of uniform convergence of the monotone

weighted average iterative method to the solutions of the nonlinear difference scheme and

continuous problem is given. Numerical experiments are presented.
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1. Introduction

In this paper we give a numerical treatment for the semilinear singularly perturbed parabolic

problem in the form

ut − µ2(uxx + uyy) + f(x, y, t, u) = 0, (x, y, t) ∈ Q = ω × (0, T ], (1.1a)

u(x, y, t) = g(x, y, t), (x, y, t) ∈ ∂ω × (0, T ], (1.1b)

u(x, y, 0) = ψ(x, y), x ∈ ω, (1.1c)

where ω = {0 < x < 1}× {0 < y < 1} , µ is a small positive parameter, ∂ω is the boundary of

ω, the functions f , g and ψ are smooth in their respective domains, and f satisfies the constraint

fu ≥ 0, (x, y, t, u) ∈ Q× (−∞,∞), (fu = ∂f/∂u). (1.2)

This assumption can always be obtained by a change of variables. Indeed, introduce

z(x, y, t) = exp(−λt)u(x, y, t),

where λ is a constant. Now, z(x, y, t) satisfies (1.1) with

ϕ = λz + exp(−λt)f(x, y, t, exp(λt)z),

instead of f , and we have ϕz = λ + fu. Thus, if λ ≥ −min fu, where minimum is taking over

the domain from (1.2), we conclude ϕz ≥ 0.
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For µ ≪ 1, the problem is singularly perturbed and characterized by boundary layers

(regions with rapid change of solutions) near boundary ∂ω (see [1] for details).

We shall employ the weighted average scheme for approximating the semilinear problem

(1.1). This nonlinear ten-point difference scheme can be regarded as taking a weighted average

of the explicit and implicit schemes. In order to practically compute the nonlinear weighted

average scheme, one requires an efficient numerical method. A fruitful method for solving non-

linear difference schemes is the method of upper and lower solutions and its associated monotone

iterations. By using upper and lower solutions as two initial iterations, one can construct two

monotone sequences which converge monotonically from above and below, respectively, to a

solution of the problem. The above monotone iterative method is well known and has been

widely used for continuous and discrete elliptic and parabolic boundary value problems. Most

of publications on this topic involve monotone iterative schemes whose rate of convergence is of

linear rate (cf. [2–7]) Some accelerated monotone iterative schemes for solving discrete elliptic

boundary value problems are given in [8, 9]. An advantage of this accelerated approach is that

it leads to sequences which converge either quadratically or nearly quadratically. In [10], an

accelerated monotone iterative method for solving discrete parabolic boundary value problems

based on the implicit scheme is presented. In [11], a combination of the accelerated monotone

iterative method from [10] with monotone Picard iterates is constructed. In [10, 11], the two

important points in investigating the monotone iterative method concerning a stopping crite-

rion on each time level and estimates of convergence rates, in the case of solving linear discrete

systems on each time level inexactly, were omitted.

In this paper, we extend the accelerated monotone iterative method from [10] to the case

when on each time level a nonlinear difference scheme based on the weighted average of the

explicit and implicit schemes is solved inexactly, and give an analysis of a convergence rate of

this monotone iterative method. In [10], it is assumed that a pair of ordered upper and lower

solutions is given on each time level, and this pair is used as initial iterates in the accelerated

monotone iterative method. Our iterative method combines an explicit construction of initial

upper and lower solutions on each time level and the modified accelerated monotone iterative

method.

In [3], we investigate uniform convergence properties of the monotone weighted average iter-

ative method applied to solving the semilinear problem (1.1). This monotone method possesses

only linear convergence rate. In this paper, we investigate uniform convergence properties of

the monotone weighted average iterative method based of the extended accelerated monotone

iterative method from [10] . We show that the proposed monotone iterative method possesses

quadratic convergence rate.

The structure of the paper as follows. In Section 2, we introduce the nonlinear weighted

average scheme for the numerical solution of (1.1). The monotone weighted average iterative

method is presented in Section 3. The explicit construction of initial upper and lower solutions is

incorporated in the monotone weighted average iterative method. Section 4 deals with existence

and uniqueness of the solution to the nonlinear difference scheme. In Section 5, we show that

the monotone weighted average iterative method possesses uniform quadratic convergence rate.

An analysis of convergence rates of the monotone weighted average iterative method, based

of different stopping tests, is given in Section 6. Section 7 deals with uniform convergence

of the monotone weighted average iterative method to the continuous problem (1.1). The

final Section 8 presents results of numerical experiments where iteration counts are compared

between the proposed monotone weighted average iterative method and monotone weighted


