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Abstract

In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner

is proposed for saddle point problems from the element-free Galerkin (EFG) discretization

method. The EFG method is one of the most widely used meshfree methods for solving

partial differential equations. The RHSS preconditioner is constructed much closer to the

coefficient matrix than the well-known HSS preconditioner, resulting in a RHSS fixed-point

iteration. Convergence of the RHSS iteration is analyzed and an optimal parameter, which

minimizes the spectral radius of the iteration matrix is described. Using the RHSS pre-

conditioner to accelerate the convergence of some Krylov subspace methods (like GMRES)

is also studied. Theoretical analyses show that the eigenvalues of the RHSS precondi-

tioned matrix are real and located in a positive interval. Eigenvector distribution and an

upper bound of the degree of the minimal polynomial of the preconditioned matrix are

obtained. A practical parameter is suggested in implementing the RHSS preconditioner.

Finally, some numerical experiments are illustrated to show the effectiveness of the new

preconditioner.
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1. Introduction

In recent years, meshfree (or meshless) methods have been developed rapidly as a class of

potential computational techniques for solving partial differential equations. In the meshfree

method, it does not require a mesh to discretize the problem domain, and the approximate

solution is constructed entirely on a set of scattered nodes. A lot of meshfree methods have

been proposed; see [27] for a general discussion. In this paper, we mainly consider the element-

free Galerkin method [11], which is one of the most widely used meshfree methods.
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The EFG method is almost identical to the conventional finite element method (FEM), as

both of them are based on the Galerkin formulation, and employ local interpolation/approximation

to approximate the trial function. The EFG method requires only a set of distributed nodes on

the problem domain, while elements are used in the finite element method. Other key differences

between the EFG method and the FEM method lie in the interpolation methods, integration

schemes and in the enforcement of essential boundary conditions. The EFG method employs

the moving least squares (MLS) approximation method to approximate the trial functions. One

disadvantage of MLS approximation is that the shape functions obtained are lack of Kronecker

delta function property, unless the weight functions used in the MLS approximation are singular

at nodal points. Therefore, the essential boundary conditions in the EFG method can not be

easily and directly enforced. Several approaches have been proposed for imposing the essential

boundary conditions in the EFG method, such as Lagrange multiplier (LM) method [11, 28],

penalty method [33], augmented Lagrangian (AL) method [31], coupled method [22] and so on.

Using independent Lagrange multipliers to enforce essential boundary conditions is common

in structural analysis when boundary conditions can not be directly applied. However, this

method leads to a linear system of saddle point type and increases the number of unknowns.

The penalty method is very simple to be implemented and yields a symmetric positive definite

stiffness matrix, but the penalty parameter must be chosen appropriately. Moreover, the ac-

curacy of the penalty method is less than that of the Lagrange multiplier method in general.

The augmented Lagrangian method uses a generalized total potential energy function to im-

pose essential boundary conditions. The augmented Lagrangian regularization used in the AL

method is composed of the sum of the pure Lagrangian term and the penalty term. In fact, the

AL method combines the LM method and the penalty method, but it leads to a better matrix

structure than the LM method; see discussion in Section 2 and [31]. For other methods stud-

ied for imposing essential boundary conditions in the EFG method; see [22, 27] and references

therein.

In this paper, we study the iterative solutions of large and sparse linear systems of equations

arising from the EFG method with the AL method imposing essential boundary conditions. The

discrete linear system of equations has the following block 2× 2 form

Ax ≡

[

A BT

−B 0

] [

u

λ

]

=

[

f

g

]

≡ b, (1.1)

where A = K + G ∈ R
n×n (K is the stiffness matrix and G is obtained from penalty term),

B ∈ R
m×n is obtained from Lagrangian term, u ∈ R

n is the approximation solution at nodes,

λ ∈ R
m is the Lagrange multiplier, f = f1+f2 ∈ R

n (f1 is the stiffness vector and f2 is obtained

from penalty term), g ∈ R
m and m ≤ n. n and m are related to the number of nodes in global

problem domain and the number of nodes in essential boundary, respectively. In general, A is

symmetric and positive definite and B has full rank. Under those conditions, we know that the

solution of (1.1) exists and is unique.

The linear system (1.1) can be regarded as the saddle point problem. It frequently arises

from computational fluid dynamics, mixed finite element of elliptic PDEs, constrained opti-

mization, constrained least-squares problem and so on. In recent years, saddle point problems

have been received considerable attention. A large amount of work has been devoted to devel-

oping efficient algorithms for solving saddle point problems. When the matrix blocks A and B

are large and sparse, iterative methods become more attractive than direct methods for solv-

ing the saddle point problems (1.1), but direct methods play an important role in the form of


