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Abstract

In this paper, we consider the solution of the standard linear programming (LP). A

remarkable result in LP claims that all optimal solutions form an optimal face of the

underlying polyhedron. In practice, many real-world problems have infinitely many optimal

solutions and pursuing the optimal face, not just an optimal vertex, is quite desirable. The

face algorithm proposed by Pan [19] targets at the optimal face by iterating from face

to face, along an orthogonal projection of the negative objective gradient onto a relevant

null space. The algorithm exhibits a favorable numerical performance by comparing the

simplex method. In this paper, we further investigate the face algorithm by proposing an

improved implementation. In exact arithmetic computation, the new algorithm generates

the same sequence as Pan’s face algorithm, but uses less computational costs per iteration,

and enjoys favorable properties for sparse problems.
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1. Introduction

In this paper, we consider the solution of the linear programming (LP) in the standard form:

min c⊤x

s.t. Ax = b, x ≥ 0,
(1.1)

where A ∈ R
m×n (m < n), and c,x ∈ R

n and b ∈ R
m.

There are two basic classes of algorithms for solving LP in the literature. The first milestone

is the well-known simplex method founded by Dantzig [2], in which the philosophy is to move on

the underlying polyhedron, from vertex to an adjacent vertex, until reaching an optimal vertex.

Since then, extensive theoretical analysis, numerical implementations as well as numerous vari-

ants (see e.g., [1,3,4,6,7,9,13–18,20–24]) have been developed. To date, the simplex algorithm is

accepted as one of the most famous and widely used mathematical tools in the world [13]. The
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other type of methods distinguishes the simplex method by approaching an optimal solution

(not necessarily an optimal vertex) from inside of the polyhedron, and they are usually catego-

rized as the interior point methods. Karmarkar’s projective algorithm [10] is one of successful

and practical interior point methods and stimulates this trend (see e.g., [11–13,23]). Both the

simplex method (and its variants) and the interior point methods have their own advantages

and disadvantages; in particular, some interior point methods can reach an optimal solution in

polynomial time theoretically, yet neither of them in general shows a dominant performance to

the other numerically.

One of the remarkable results for LP (1.1) is that whenever (1.1) has a solution, then at

least one vertex of the polyhedron of (1.1) is an optimal solution (see e.g., [13]). This serves as

the theoretical fundamental for Dantzig’s simplex method. Another well-known result of (1.1)

claims that all the optimal solutions form an optimal face (see Definition 2.1). In practice, many

real-world problems usually have infinitely many optimal solutions and pursuing an optimal face,

not just a vertex (a vertex is a special face), is quite desirable. This motives the face algorithm

proposed by Pan [19, Chapter 8]1) . The basic idea behind the face algorithm is to move from

face to face, along an orthogonal projection of the negative objective gradient onto a relevant

null space (the search direction), to reach an optimal face. The search direction can be efficiently

computed via the Cholesky factorization. Preliminary computational testing is carried out and

the results show that the face algorithm has a favorable numerical performance [19, Chapter 8].

In this paper, we further investigate the face algorithm by proposing an improved imple-

mentation. The basic idea of our new implementation is to update the search direction in a

similar manner as the eta-matrix technique proposed by Dantzig and Orchard-Hayes [3] for

the simplex method. The key for our implementation is that the kth search direction of the

face algorithm is the solution of a relevant linear system whose coefficient matrix only has a

rank-one correction upon that of (k − 1)th. This fact, with the aid of the Sherman-Morrison

formula (see Lemma 4.1), then makes it possible to reuse the previous information and then

update the search direction in a similar fashion to the eta-matrix technique of Dantzig and

Orchard-Hayes to improve the efficiency of the face algorithm. In exact arithmetic computa-

tion, we will see that our improved face algorithm generates the same sequence as the face

algorithm of Pan [19, Chapter 8], but the new implementation uses less computational costs

per iteration and enjoys favorable properties for sparse problems. The detailed computational

gains and performance tradeoffs will be discussed in Section 5.

The remaining paper is organized in the following way. In Section 2, some basic concepts

and results related to the face algorithm are provided. Section 3 then outlines the original face

algorithm proposed in [19, Chapter 8]. Our new implementation, together with some new and

further properties of the face algorithm, is presented in Section 4. The computational gains as

well as performance tradeoffs of our new algorithm are then discussed in Section 5. Finally, we

report computational results in Section 6 and draw a conclusion in Section 7.

Throughout the paper, all vectors are column vectors and are typeset in bold. For a given

vector x, we use xi to denote the i-th component of x. For a matrix A ∈ R
n×m, A⊤ denotes its

transpose, and Null(A) stands for the null space of A.

1) The face algorithm is also presented and available at: P.-Q. Pan, A face algorithm for linear programming,

preprint. http://www.optimization-online.org/DB HTML/2007/10/1806.html.


