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Abstract

In this paper, we present an accelerated simulation approach on waveform relaxation

using Krylov subspace for a large time-dependent system composed of some subsystems.

This approach first allows these subsystems to be decoupled by waveform relaxation. Then

the Arnoldi procedure based on Krylov subspace is provided to accelerate the simulation of

the decoupled subsystems independently. For the new approach, the convergent conditions

on waveform relaxation are derived. The robust behavior is also successfully illustrated

via numerical examples.
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1. Introduction

Time-dependent systems are widely used to model and simulate complex physical processes.

With the rapid development of the very large-scale integration technology, the dimension of

time-dependent systems often becomes very large. For simulating such systems, it becomes

extremely important to seek robust numerical simulation methods. Due to this fact, how to

numerically solve large time-dependent systems has attracted extensive attention.

In this paper, we consider a time-dependent system composed of k subsystems. For conve-

nience sake, we assume that each subsystem is a linear time-invariant system described as

Ej

dxj(t)

dt
= Ajxj(t) +Bjuj(t), yj(t) = Cjxj(t), j = 1, 2, · · · , k, (1.1)

with the initial conditions xj(t0), and

{
uj(t) = Fj1y1(t) + Fj2y2(t) + · · ·+ Fjkyk(t) +Gju(t),

y(t) = H1y1(t) +H2y2(t) + · · ·+Hkyk(t),
(1.2)

where Ej , Aj ∈ Rnj×nj (j = 1, 2, · · · , k), Bj ∈ Rnj×mj , Cj ∈ Rpj×nj , Fji ∈ Rmj×pi(i =

1, 2, · · · , k), Gj ∈ Rmj×m, Hj ∈ Rp×pj , xj(t) ∈ Rnj are internal state variables, uj(t) ∈ Rmj

are internal inputs, yj(t) ∈ Rpj are internal outputs, u(t) ∈ Rm is an external input, and

y(t) ∈ Rp is an external output. To our knowledge, this kind of system frequently arises in
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numerous research areas such as circuit simulation, control models, and discretizations of partial

differential equations.

In the literature, waveform relaxation (WR), also known as dynamic iteration, is an effective

technique to solve coupled systems described by ordinary differential equations and partial

differential equations, for details see [4–6, 9, 10]. The WR technique allows coupled systems to

be independently solved with its own time step length. Two typical WR schemes are the Jacobi

and Gauss-Seidel relaxation processes. For simulating the system (1.1), the WR technique is

an effective decoupling method. For example, for the j-th (j = 1, 2, · · · , k) subsystem of (1.1),

an iterative form of WR can be constructed as

E1j

dx
(l+1)
j (t)

dt
−
(
A1j +B1jF1,jjC1j

)
x
(l+1)
j (t)

=E2j

dx
(l)
j (t)

dt
−
(
A2j +B2jF2,jjC2j

)
x
(l)
j (t) +Bj

( k∑

i=1,i6=j

FjiCix
(l)
i (t) +Gju(t)

)
,

(1.3)

where E1j − E2j = Ej , (A1j + B1jF1,jjC1j) − (A2j + B2jF2,jjC2j) = Aj + BjFjjCj , l is a

nonnegative integer, x
(l+1)
j (t0)(j = 1, 2, · · · , k) are initial conditions, and the functions x

(0)
j (·)

are initial guesses. Numerical algorithms with WR suit well for parallel processing. In addition,

model order reduction is another effective technique which seeks to replace a very large-scale

integration system by a system of substantially lower order. There are two main kinds of model

order reduction methods. The first one is the Krylov subspace method, for details see [7, 12].

The other one is the balanced truncation reduction method, e.g., see [7, 13, 16]. For nonlinear

systems, some model order reduction methods are discussed in [1, 2, 15]. Some work on model

order reduction can also be referred to [11, 14].

Instead of direct numerical simulation of the system (1.1), we use the Krylov subspace model

order reduction technique to construct a reduced system as follows

Ẽj

dx̃j(t)

dt
= Ãj x̃j(t) + B̃j ũj(t), ỹj(t) = C̃j x̃j(t), j = 1, 2, · · · , k, (1.4)

where x̃j(t) ∈ Rqj , ũj(t) ∈ Rmj , ỹj(t) ∈ Rpj , Ẽj , Ãj ∈ Rqj×qj , B̃j ∈ Rqj×mj , C̃j ∈ Rpj×qj ,

qj ≪ nj , and

ũj(t) =

k∑

i=1,i6=j

Fjiỹi(t) +Gju(t), ỹ(t) =

k∑

i=1

Hiỹi(t).

Our method combining WR with Krylov subspace seeks to remedy the shortcomings of WR,

such as the poor convergence property and expensive computational costs. The WR technique

not only gives a decoupling method for the system (1.1) but also offers a new model order

reduction strategy based on Krylov subspace. Some concrete Krylov subspaces which can bring

the original system (1.1) to the reduced system (1.4) may be constructed based on the iterative

process (1.3).

The outline of this paper is organized as follows. In Section 2, we present some basic

properties of solving the system (1.1), and discuss the decoupling of this system by the WR

technique. Moreover, for the system of index one, the convergence condition of the WR solutions

is derived. In Section 3, we reduce each independent subsystem to a system with lower order

and analyze the convergence of the WR solutions for the reduced system of index one. The

moment matching property is also analyzed in Section 3. In Section 4, we present a structure-

preserving algorithm which preserves the differential-algebraic structure of the original system.


