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Abstract

The error caused by the ghost force is studied for a quasicontinuum method with planar

interface in two dimension. For a special case, we derive an analytical expression of the

error, which is exploited to prove that the ghost force may lead to a finite size error for

the gradient of the solution. The pointwise estimate of the error shows that the error

decays algebraically away from the interface, which is much slower than that of the one-

dimensional problem, for which the error decays exponentially away from the interface.
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1. Introduction

Multiscale methods have been developed to simulate mechanical behaviors of solids for

several decades [18]. Combination of models at different scales greatly enhances the dimension of

problems that computers can deal with. However, problems regarding the consistency, stability

and convergence of the multiscale methods may arise from the coupling procedure [3]. Taking

the quasicontinuum (QC) method [13, 24] for example, one of the main issues is the so called

ghost force problem [22], which is the artificial non-zero force that the atoms experience at the

equilibrium state. In the language of numerical analysis, the scheme lacks consistency at the

interface between the atomistic region and the continuum region [4]. For the one-dimensional

problem, it has been shown in [2,20] that the ghost force may lead to a finite size error for the

gradient of the solution. The error decays exponentially away from the interface.

To understand the influence of the ghost force for high dimensional problems, we study a

two-dimensional triangular lattice model with a QC approximation. This QC method couples

the Cauchy-Born elasticity model [1] and the atomistic model with a planar interface. Numerical

results show that the ghost force may lead to a finite size error for the gradient of the solution

as the one-dimensional problem. The error profile exhibits a layer-like structure. Outside the

layer, the error decays algebraically.

To further characterize the influence of the ghost force, we introduce a square lattice model

with a QC approximation. Compared to the triangular lattice model, this model can be solved
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analytically and the error profile exhibits a clear layer-like structure. Based on the analytical

solution, we prove the error committed by the ghost force for the gradient of the solution is

O(1) and the error decays away from the interface to O(ε) at distance O(
√
ε ), where ε is the

equilibrium bond length. These are also confirmed by the numerical results. We note that

there are some recent efforts devoted to the convergence analysis for ghost force free multiscale

coupling methods in high dimension, we refer to [16, 21] and the references therein.

The paper is organized as follows. Numerical results for the triangular lattice model and

the square lattice model with QC approximations are presented in § 2 and § 3, respectively.

We derive an analytical expression of the solution of the square lattice model with a QC

approximation in § 4. The pointwise estimate of the solution is proved in § 5.

2. A QC Method for Triangular Lattice

2.1. Atomistic and continuum models

We consider the triangular lattice L, which can be written as

L =
{

x ∈ R
2 | x = ma1 + na2, m, n ∈ Z

}

with the basis vectors a1 = (1, 0), a2 = (1/2,
√
3/2). Define the unit cell of L as

Γ =
{

x ∈ R
2 | x = c1a1 + c2a2, −1/2 ≤ c1, c2 < 1/2

}

.

We shall consider lattice system εL inside the domain Ω = Γ, and denote Ωε = Ω ∩ εL, where

ε is the equilibrium bond length. Assume that the atoms are interacted with the potential

function, which is usually a highly nonlinear function, e.g., the Lennard-Jones potential [15].

Denote by S1 and S2 the first and the second neighborhood interaction ranges; see Fig. 2.1. In

particular, we have

S1 = ∪6
i=1si = {a1, a2,−a1 + a2,−a1,−a2, a1 − a2},

S2 = ∪12
i=7si = {a1 + a2,−a1 + 2a2,−2a1 + a2,−a1 − a2, a1 − 2a2, 2a1 − a2}.

For µ ∈ Z
2, the translation operator T µ

ε is defined for any lattice function z : L → R
2 as

(T µ
ε z)(x) = z(x+ εµ1a1 + εµ2a2) for x ∈ L.

We define the forward and backward discrete gradient operators as

D+
s = ε−1(T µ

ε − I) and D−
s = ε−1(I − T µ

ε ),

where s = µ1a1 + µ2a2 and I is the identity operator. We shall also use the short-hand

Dz = (D+
1 z,D

+
2 z) = (D+

s1z,D
+
s2z).

In what follows, we denote z(x) as the deformed positions of the atoms.

Consider an atomic system posed on Ωε. The total energy is given by

Etot
at =

1

2

∑

x∈Ωε

∑

s∈S1∪S2

V
(

|D+
s z(x)|

)

, (2.1)


