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Abstract

In this paper, we propose a tailored finite cell method for the computation of two-

dimensional Helmholtz equation in layered heterogeneous medium. The idea underlying

the method is to construct a numerical scheme based on a local approximation of the

solution to Helmholtz equation. This provides a computational tool of achieving high

accuracy with coarse mesh even for large wave number (high frequency). The stability

analysis and error estimates of this method are also proved. We present several numerical

results to show its efficiency and accuracy.
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1. Introduction

In this paper, we study the Helmholtz equation in a layered heterogeneous medium

∆u(x) + k2n2(x)u(x) = f(x), for x = (x, y) ∈ Ω, (1.1)

u|x=0 = u0(y),

(
∂u

∂x
− ikn(x)u

) ∣∣∣
x=R

= 0, for y ∈ R, (1.2)

∂u

∂r
(x)− ikn(x)u(x) = o

(
1√
r

)
, as r = |x| → +∞, (1.3)

where Ω = (0, R) × R, i =
√
−1 is the imaginary unit, k is the wave number, f ∈ L2(Ω),

u0 ∈ H1(R). Here the index of refraction n(x) ∈ L∞(0, R) is a piecewise smooth function,

which satisfies

n0 ≤ n(x) ≤ N0. (1.4)

The boundary value problem of the Helmholtz equation (1.1)–(1.3) arises in many physical

fields, for example in seismic imaging where the interior structure of the Earth is layered indeed.

Moreover, we can also see similar problems in acoustic wave propagation and electromagnetic

wave propagation. The numerical computation of Helmholtz equation with large wave number
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in heterogeneous medium is extremely difficult [2, 22–24] since the mesh size has to be small

enough to resolve the wave length. In the last three decades, many scientists have presented

efficient methods for this kind of problem, such as the fast multipole method [12], multifrontal

method [27], discrete singular convolution method [4], hybrid numerical asymptotic method [11],

spectral approximation method [32], element-free Galerkin method [36,38], geometrical optics-

based numerical method [6, 7], etc. In general one has the restriction kh = O(1) for the mesh

size h to achieve a satisfactory numerical accuracy. On the other hand, if we use asymptotic

method, we usually need to overcome the difficulties about caustics [6, 7, 10, 31].

Tailored finite point method (TFPM) was proposed by Han, Huang and Kellogg for the

numerical solutions of singular perturbation problem [18] in 2008. TFPM is different from the

typical finite point method [9, 26, 29, 30] which is a development of finite difference method by

emphasizing the meshless technique. The main idea underlying the TFPM is to use the exact

solution of the local approximate problem to construct the global approximation. Recently,

TFPM has been further developed to solve various numerical problems. For example, Han

and Huang studied TFPM for the Helmholtz equation in one dimension [13], and obtained the

uniform convergence in L2-norm with respect to the wave number. They also studied TFPM for

different kinds of singular perturbation problems [14–16], without any prior knowledge of the

boundary/interior layers. This method can provide high accuracy even on the uniform coarse

mesh h ≫ ε, where ε is the small parameter in the singular perturbation problem. For the

interface problem [20], the method produces uniform convergence in energy norm even for the

PDEs of mixed type. Later, Shih et al proposed a characteristic TFPM and rotated the stencil

an angle to keep the grids be a streamline aligned [34,35], that improved the accuracy on coarse

mesh. Furthermore, the method was applied to solve the steady MHD duct flow problems with

boundary layers successfully [19]. TFPM also works well for time-dependent problem [21] and

fourth-order singular perturbation problem [17]. More related work can be found in two review

papers [5, 37] and the references therein. Note that there was also much work about meshless

methods for Helmholtz equation [1, 3, 8, 28].

In this paper, we introduce a new approach to construct a discrete scheme for the equa-

tion (1.1) based on the former studies [13, 20]. We call the new scheme “tailored finite cell

method”(TFCM), because it has been tailored to some local properties of the problem in each

cell. As we consider the layered medium at here, we will apply our idea after a Fourier trans-

form in y-direction. Hence this is a semi-discrete method designed on the properties of the

local approximate problem. The method can achieve high accuracy with relatively cheap com-

putational cost. Especially, we can get the exact solution with fixed points for piecewise linear

coefficient for both small and large wave numbers.

2. Tailored Finite Cell Method

In this section, we describe the method in details. To be more precise, in the rest of this

paper, we shall assume that the piecewise smooth function n(x) is also piecewise monotone, i.e.

there are some points χj (j = 0, 1, · · · , L) such that 0 = χ0 < χ1 < · · · < χL = R, and

Ij = (χj−1, χj), n|Ij ∈ C2(Īj) and n|Ij is monotone, j = 1, · · · , L.

First, we take a Fourier transform with respect to y, i.e. for v(x, y) ∈ L2(Ω),

v̂(x, ξ) ≡ 1√
2π

∫

R

v(x, y)e−iξydy.


