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Abstract

In this paper, the discrete–time static output feedback control design problem is con-

sidered. A nonlinear conjugate gradient method is analyzed and studied for solving an

unconstrained matrix optimization problem that results from this optimal control prob-

lem. In addition, through certain parametrization to the optimization problem an initial

stabilizing static output feedback gain matrix is not required to start the conjugate gradi-

ent method. Finally, the proposed algorithms are tested numerically through several test

problems from the benchmark collection.
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1. Introduction

The static output feedback problem (SOF) for discrete or continuous-time control systems is

one of the most studied problems, where wide area of applications in engineering and in finance

are represented by this problem; see the two surveys [12,21] and the references therein. Partic-

ularly, many special purpose methods are designed by the engineers for solving this problem;

see [12, 21].

Various gradient-based methods are available for solving the SOF problem among them is

the descent Anderson–Moore method [12] that solves the SOF problem by successfully min-

imizing particular quadratic approximation of the objective function combined with step-size

rule. Mäkilä and Toivonen [12] solves the discrete problem by Newton’s method with line search

globalization. Rautert and Sachs [20] suggest quasi-Newton method with line search for solving

the continuous-time SOF problem. Mostafa [16] introduces trust region method for solving the

discrete-time SOF problem.

Levine–Athans method [12] is among the classical techniques for solving this problem. In

this method a stationary point of the optimization problem is obtained by solving the system

of the necessary optimality conditions under certain assumptions on the constant matrices of

the problem. It has been reported that this method is computationally expensive and lacks of

convergence properties.

All these methods are based on reformulating the discrete or continuous-time SOF prob-

lems into unconstrained matrix optimization problems. The formulation of the SOF problem

as a constrained optimization problem allows utilizing numerous available constrained opti-

mization techniques. Leibfritz and Mostafa [9] formulate the SOF problem as a nonlinear
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semi-definite programming problem and suggest for solving this problem an interior-point trust

region method. Moreover, they suggest in [10] unconstrained and constrained trust region ap-

proaches for solving two formulations of the SOF problem. Koc̆vara et al. [7] consider the

constrained formulation of the SOF problem and introduce an augmented Lagrangian semi-

definite programming method. Mostafa [14] and [15] suggests a trust region method for solving

the decentralized SOF problem and an augmented Lagrangian SQP method for solving a special

class of nonlinear semi-definite programming problem related to the SOF problem, respectively.

In this paper, a nonlinear Conjugate Gradient (CG) method is analyzed and studied for

solving the discrete-time SOF problem, which can be written as unconstrained optimization

problem of the following form (see, e.g., the two surveys [12, 21]):

min
F∈SF

J(F ) = Tr (P (F )Q(F )), (1.1)

where the variable P (F ) is a matrix that solves the following discrete Lyapunov equation:

P (F ) = A(F )P (F )A(F )T + V, (1.2)

Q(F ) = Q+CTFTRFC, A(F ) = A+BFC, and Tr (·) is the trace operator. The variable F is

a matrix that must be chosen from the following set of stabilizing output feedback controllers:

SF =
{

F ∈ R
nu×ny : ρ (A+BFC) < 1

}

, (1.3)

where ρ (·) is the spectral radius. Moreover, A,B,C,Q,R, and V are given constant matrices of

appropriate dimensions, which are defined and explained in Section 2. Problem (1.1)–(1.2) is an

unconstrained optimization problem in the matrix variable F , where the eigenvalue condition

F ∈ SF will be fulfilled within the considered CG method.

Note, that the set SF is open and in general unbounded. Therefore, it is convenient to

define the following level set:

L(F0) = {F ∈ SF : J(F ) ≤ J(F0)} . (1.4)

This level set is compact; see [12, Appendix A]. For given F0 ∈ SF the theorem of Bolzano–

Weierstrass ensures the existence of a unique solution to the optimization problem (1.1)–(1.2)

in the level set L(F0); see [12].

The CG method was proposed by Hestenes and Stiefel [6] early in 1952 for solving linear

systems of algebraic equations. Fletcher and Reeves [5] in 1964 developed a CG method for

solving unconstrained optimization problems. Moreover, many different CG methods have been

proposed in recent years (see, e.g., [1, 3, 4, 11, 18] and the references therein).

There are many large and medium-scale applications in the literature of output feedback

control design where higher order optimization methods fail to solve; see, e.g., the benchmark

collection [8] for various engineering applications. The attempt in this paper is to apply a

modified Dai-Yuan nonlinear CG method which belongs to the class of low storage methods for

solving the problem (1.1)–(1.2). Moreover, the convergence theory given in [1] is extended to

the considered algorithm.

The existence of an initial stabilizing SOF gain matrix F0 ∈ SF is one of the main obstacles

that typically faces numerical methods that solve this problem class. By parameterizing the

optimization problem the resulting CG method does not require initial F0 ∈ SF to start the

iteration sequence. The modified algorithm is denoted by CG2.


