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Abstract

We present in this paper a numerical method for hypersingular boundary integral equa-

tions. This method was developed for planar crack problems: additional edge singularities

are known to develop in that case. This paper includes a rigorous error analysis proving the

convergence of our numerical scheme. Three types of examples are covered: the Laplace

equation in free space, the linear elasticity equation in free space, and in half space.
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1. Introduction

1.1. The three types of boundary eigenvalue problems studied in this paper

In this paper we study three types of numerical eigenvalue problems using hypersingular

boundary integral equations on cracks, either in three dimensional space, or in the lower half

space with traction free boundary conditions on the top plane x3 = 0. The first type of problem

involves the scalar Laplace operator in free space, cut by a planar fault Γ. Due to the possibility

of changing coordinates by rotation and translation we will assume that Γ is contained in the

plane x3 = 0. Denoting e1, e2, e3, the natural basis for R3, we choose the normal vector for Γ

to be n = −e3.
We seek to evaluate eigenfunctions f defined in some adequate functional space, ensuring

decay at infinity, and satisfying

∆f = 0, in R3 \ Γ, (1.1a)

[∂nf ] = 0, across Γ, (1.1b)

∂nf = γ[f ]. (1.1c)

Here γ is the eigenvalue and brackets indicate jumps across Γ, namely

[∂nf ] = lim
(x1,x2)∈Γ, x3→0+

∂nf(x1, x2, x3)− ∂nf(x1, x2,−x3), (x1, x2, 0) ∈ Γ.

A two dimensional analog to this eigenvalue problem was shown to be relevant to the study of

the destabilization of strike slip faults: see [3] and [7]. We are not aware of a straightforward

physical interpretation of problem (1.1) in 3D. In the present study this problem is a convenient
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intermediate step between the strike slip case and the fully three dimensional elasticity case.

In particular this step is instrumental in comparing our numerical method to others and in

deriving an error analysis which is also expected to hold in the subsequent two cases.

The second type of eigenvalue problem considered in this paper involves linear elasticity in

free space. The unknown eigenfunctions to be found are vector fields defined in some adequate

functional space, ensuring some decay at infinity, and satisfying

µ∆ϕ+ (λ+ µ)∇divϕ = 0, in R3 \ Γ, (1.2a)

[ϕ · e3] = 0, [ϕ · e2] = 0, [Tnϕ] = 0, across Γ, (1.2b)

Tnϕ · e1 = β[ϕ] · e1, (1.2c)

where the assumptions on Γ are the same as previously, β is the eigenvalue, and Tnϕ is the

usual notation for the stress vector, that is,

3∑

j=1

(λdivϕ δij + µ(∂iϕj + ∂jϕi))nj .

Eqs. (1.2) model a fault in free elastic space undergoing destabilization during which slip (that

is, displacement discontinuities) is allowed only in the e1 direction. A thorough study of this

eigenvalue problem, including a formal proof for simplicity of the first eigenspace, was under-

taken in [19]. The numerical results shown in that paper are, however, limited by the fact that

they were produced by a finite element software package. Questions of numerical convergence,

error analysis, and computational domain truncation, were all left unanswered: we propose to

address them in this present paper.

The third type of eigenvalue problem considered in this paper involves linear elasticity in

half space. Denote R3− the open set of points (x1, x2, x3) in R3 such that x3 < 0. We assume

that the fault Γ is strictly included in R3−. Traction free conditions are imposed on the top

boundary x3 = 0. These conditions are relevant to applications in geophysics. By rotation we

can assume that the plane containing Γ has normal direction n = (n1, 0, n3). Let t1 and t2 be

two vectors such that (n, t1, t2) forms an orthonormal basis for R3. The unknown eigenfunctions

to be found are vector fields defined in some adequate functional space, ensuring some decay

at infinity, and satisfying

µ∆ψ + (λ+ µ)∇divψ = 0, in R3− \ Γ, (1.3a)

Tnψ = 0, on x3 = 0 (1.3b)

[ψ · n] = 0, [ψ · t2] = 0, [Tnψ] = 0, across Γ, (1.3c)

Tnψ · t1 = β[ψ · t1]. (1.3d)

Eqs. (1.3) model a fault in free elastic half space undergoing destabilization during which slip

(that is displacement discontinuities) is allowed only in the t1 direction. No forces are applied

on the top boundary x3 = 0.

1.2. Outline of our main results and overview of alternative computational methods

found in the literature

The main achievement of this paper is to provide a numerical method for each of the

problems (1.1), (1.2), (1.3) which relies on boundary integral formulations. The advantage of


