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Abstract

This paper provides an analysis on the effects of exact and inexact integrations on

stability, convergence, numerical diffusion, and numerical oscillations for the Eulerian–

Lagrangian method (ELM). In the finite element ELM, when more accurate integrations

are used for the right-hand-side, less numerical diffusion is introduced and better approx-

imation is obtained. When linear interpolation is used for numerical integrations, the

resulting ELM is shown to be unconditionally stable and of first-order accuracy. When

Gauss quadrature is used, conditional stability and second-order accuracy are established

under some mild constraints for the convection-diffusion problems. Finally, numerical ex-

periments demonstrate that more accurate integrations lead to better approximation, and

spatial adaptivity can substantially reduce numerical oscillations and smearing that often

occur in the ELM when inexact numerical integrations are used.
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1. Introduction

In many physical problems, convection dominates diffusion; for these nearly hyperbolic

problems, classical Galerkin finite element methods may suffer from instability and it is natural

to explore the method of characteristics (MoC). It is well-known, however, that deformation of

mesh in the pure Lagrangian framework could lead to deterioration of accuracy of the numerical

solution. The finite element Eulerian–Lagrangian method (ELM) [1, 2] seeks the position of a

particle at previous time that reaches a certain point at current time. Thus, the diffusion

operator is always solved on a fixed mesh, eliminating the need for mesh regeneration. This

method has many variants (see [3, 4] and references therein); and, it is also known as the

semi-Lagrangian method (SLM) in the meteorological community (cf. [5]).
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The ELM has several desirable features: (a) it allows relatively large time-step size; (b) it

results in a symmetric positive definite discrete linear system, which allows usage of available

optimal iterative solvers; (c) it treats (linear or nonlinear) convection terms in a uniform way

and the nonlinearity can be handled by solving various ordinary differential equations (ODEs),

which can be done in parallel easily.

Despite of all these advantages, the ELM is known to have several disadvantages: (1) it

is sensitive to the accuracy of integration/interpolation; (2) it can introduce certain level of

numerical diffusion in practice; (3) its computational overhead for back tracking is usually

heavy. We refer to [6–8] and the reference therein for more details. Indeed, (1) and (2) are

essentially related. Usually, the finite difference ELMs are more diffusive when first-order

interpolation schemes are employed; this is similar to the upwinding scheme [9]. In the finite

element framework, numerical diffusion is much smaller. We can expect that numerical diffusion

can be reduced when more accurate integrations are used on the right-hand-side of finite element

weak formulation. In particular, for a simple one-dimensional case, we prove that the ELM is

free of numerical diffusion when the right-hand-side is integrated exactly; see Section 3. For

more general cases, our numerical experiments also confirms this expectation; see Section 6.

There have been discussions on the convergence and stability of the ELM; we refer to [1,

2, 10, 11] for a priori error estimations, and [12, 13] for studies on numerical stability. Most

analysis on this method in the literature have been carried out under the assumption that all

integrations are evaluated exactly. However, numerical quadratures often have to be used to

evaluate these integrations for two- and three-dimensional problems in practice. Without the

exact-integration assumption, analysis of the ELM is much more involved. To the best of our

knowledge, [12] and [13] are the only papers that analyzed the effect of numerical quadratures

theoretically. More specifically, [12] studied how the stability of the ELM is compromised by

some classical quadrature rules in one dimensional case for pure transport problems.

A posteriori error analysis and spatial mesh adaptivity have been applied to the ELM;

see [14–17]. In particular, [16] gave a residual-based L2(L2) a posteriori error estimator; how-

ever, the numerical experiments therein indicated that the norm of the residual on an individual

element may be a poor estimate of the local error (the norm of the residual can be used to

bound the error on a global basis from above.) In [17], the authors derived a sharp L∞(L1)

a posteriori error estimator for a nonlinear convection-diffusion equation, which is discretized

with the ELM implicitly in time and the continuous piecewise linear finite element in space.

We will use the spatial error estimators proposed in [17] to drive out adaptive mesh refinements

in Sections 5 and 6.

In this paper, we make the following observations on ELM with inexact numerical integra-

tions through theoretical analysis and numerical experiments:

• Numerical diffusion and dispersion. We observe that, when exact integration is employed,

very little numerical diffusion and dispersion are introduced by ELM. On the other hand,

ELM with linear interpolations tends to introduce excessive numerical diffusion.

• Stability and convergence rate. We show the conditional stability and optimal conver-

gence rate for ELM with Gauss quadratures, and unconditional stability and suboptimal

convergence rate for ELM with linear interpolations.

• Effects of adaptive mesh refinement. The adaptive mesh refinement can not only stabilize

the scheme but also reduce numerical diffusion.


