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Abstract

In this paper we design and analyze a class of high order numerical methods to two
dimensional Heaviside function integrals. Inspired by our high order numerical methods
to two dimensional delta function integrals [19], the methods comprise approximating the
mesh cell restrictions of the Heaviside function integral. In each mesh cell the two dimen-
sional Heaviside function integral can be rewritten as a one dimensional ordinary integral
with the integrand being a one dimensional Heaviside function integral which is smooth on
several subsets of the integral interval. Thus the two dimensional Heaviside function inte-
gral is approximated by applying standard one dimensional high order numerical quadra-
tures and high order numerical methods to one dimensional Heaviside function integrals.
We establish error estimates for the method which show that the method can achieve any
desired accuracy by assigning the corresponding accuracy to the sub-algorithms. Numeri-
cal examples are presented showing that the second to fourth-order methods implemented
in this paper achieve or exceed the expected accuracy.
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1. Introduction

We study in this paper a class of high order numerical methods to the two dimensional

Heaviside function integrals ∫

R2

f(x, y)H(u(x, y))dxdy, (1.1)

where f(x, y) is an integrand function, u(x, y) is a level set function whose zero points de-

fine certain curve in the two dimensional space which compose the boundaries of an irregular

bounded domain Ω = {(x, y)|u(x, y) > 0}. The Heaviside function integral (1.1) is equivalent

to ∫

Ω

f(x, y)dxdy. (1.2)

We consider that the functions f, u have sufficient smoothness and their values are only provided

at grid points of a regular mesh. The domain Ω is defined implicitly by the level set function

u. Studying the computations of Heaviside function integrals in two and three dimensions

in the above context is applicable to many problems. One example is computing immiscible

multiphase flow [2, 9, 11]. In such applications the unknown quantities such as density and

viscosity are generally discontinuous across interfaces separating the immiscible fluids. One

convenient strategy is to employ fixed computational mesh and allow the moving interface to

cut through mesh cells. In this situation the computations by finite element method requires
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evaluating integrals with discontinuous integrands in the variational formulation, which can be

performed by resorting to computations of Heaviside function integrals.

The computation of Heaviside function integrals has much relation with computing delta

function integrals. The latter problem corresponds to evaluating integrals restricted on the

domain boundary ∂Ω which is a codimension one manifold. For the study of numerical methods

to delta function integrals one can refer to [1, 3–5, 8, 10, 12–14, 16–20]. Most of these methods

have also been extended to study the computations of Heaviside function integrals.

In [10] Tornberg studied the computations of two dimensional Heaviside and delta function

integrals. The approach is to regularize the discontinuous or singular integrand, and then

apply a standard quadrature to the integral with the regularized integrand. This approach

allows the error analysis by separately considering the analytical error from regularization and

numerical error from quadrature. The error of the approach is determined by the moment and

regularity conditions of the regularized delta function and the order of the quadrature method.

This approach can be designed to be of arbitrary high order accuracy. However high order

method requires utilizing regularized delta functions with very high order moment or regularity

conditions which can be complicated and may influence the efficiency of the method.

In [3] Engquist, Tornberg and Tsai studied the regularization of multidimensional Heaviside

function based on regularized one dimensional Heaviside functions and a variable support size

formula. The method is shown to be second-order accurate which improves on the first-order

accuracy of the conventional regularization based on regularized one dimensional Heaviside

functions and the constant support size formula. They also presented a regularized Heaviside

function based on integrating a product formula of one dimensional discrete delta functions.

The product formula method following Peskin [6, 7] has the advantage that it can achieve any

desired accuracy by using one dimensional discrete delta functions with corresponding discrete

moment conditions (see the proof in [12]). However the high order version of the product

formula method has not been implemented in the case of the domain Ω implicitly defined by a

level set function.

In [4, 5] Min and Gibou designed a geometric integration method for computing Heaviside

and delta function integrals. The approach to Heaviside function integrals is to decompose the

domain Ω into simplices on which the numerical quadrature can be applied. This method gives

second-order results.

In [15] Towers proposed a type of methods for discretizing multidimensional Heaviside func-

tion based on approximating the Heaviside function by finite differencing its first few primitives.

This idea has been adopted to study the approximation of delta function integrals in [13,14,16].

Two variants of the methods are presented in [15] for computing Heaviside function integrals.

The first method gives second-order accuracy. The second method is shown to give third-order

accuracy for a specific one dimensional example and behave fourth-order convergent for general

multidimensional computations. Error analysis for the second-order version method is given

in [15]. We will give a comparison between the numerical results of the high order version

method in [15] and our high order methods in this paper, which shows the advantage of our

third- and fourth-order methods.

In this paper we design and analyze a class of high order numerical methods to the two

dimensional Heaviside function integrals (1.1). We construct these methods by considering the

approximation of the restriction of the two dimensional Heaviside function integral in each mesh

cell. Such a natural strategy of approximating mesh cell restrictions of integrals has already been

adopted in [17] for designing high order methods to delta function integrals of full codimension


