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Abstract

In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary

value problems in n-dimension (m,n ≥ 1) is proposed in a canonical fashion, which includes

the (2m−1)-th Hermite interpolation element (n = 1), the n-linear finite element (m = 1)

and the Adini element (m = 2). A nonconforming triangular finite element for the plate

bending problem, with convergent order O(h2), is also proposed.
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1. Introduction

When the conforming finite element is used for numerically discretizing the elliptic problem,

the convergence of the numerical solution to the exact solution depends on the approximation

of the finite element space only. But the strong continuity requirement makes it difficult to

construct such a conforming finite element. The idea of nonconforming finite element lies in

that such difficulty can be overcome by loosing the request on the continuity. However, the

loss of continuity will bring in the so-called consistent error, and some fundamental continuity

of the finite element space is still necessary for well-posedness and convergence. This is the

reason that most of the finite elements, conforming or nonconforming, were constructed case

by case, depending on the order of the problem and sometimes the dimensions (cf. [1–3, 5, 7,

8, 12, 14, 15, 17]). A unified approach of constructing finite elements for general problems is

still of theoretical and practical interest. Recently, a class of finite elements was discussed in a

canonical fashion in [16], for all n-dimensional 2m-th-order elliptic problem with n ≥ m ≥ 1.

The well-known nonconforming linear element for the second-order problem and the Morley

element for fourth-order problem are examples of this class. The class of finite elements is

established on simplices, and makes use of the piecewise polynomials of the lowest degree.

The nodal parameters are the natural ones to guarantee the fundamental continuity, and the

consistency error can be controlled simultaneously.
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In this paper, we will discuss the choice of nodal parameters that can be used to construct

nonconforming finite elements, with admissible consistency error. We will first propose a class

of rectangular finite elements for n-dimensional 2m-th-oder problems (m,n ≥ 1) in a canonical

fashion. The degrees of freedom are the values of function and all derivatives up to (m − 1)-

th-oder at all vertices of n-rectangle. The basic fundamental continuity is guaranteed and an

O(h) convergence rate is shown. The (2m − 1)-th Hermite interpolation element (n = 1), the

n-linear finite element (m = 1) and the Adini element (m = 2) all belong to this class.

As almost all of the nonconforming finite elements are convergent in energy norm with order

O(h), and the consistency error is the main limit, we will discuss the possibility of improving the

convergence rate by strengthening the continuity of the finite element space. We choose the plate

bending problem as an example. There have been successful attempts via other approaches,

like conforming finite element, quasi-conforming finite elements (cf. [4,6,11]) and the double set

parameter element (cf. [9]). But most nonconforming element for the plate bending problem,

such as the Morley element [8], two Veubake elements [12], the NZT element [14], the rectangle

Morley element (cf. [15]) and the Adini element (cf. [1]), are convergent with order O(h). In

this work, a new nonconforming plate element will be given, with a convergence rate of O(h2)

in energy norm.

Finally, based on the new plate element, a new Zienkiewicz-type element will be deduced

and reported for comparison. The new Zienkiewicz-type element is convergent for the plate

bending problem with order O(h). Its consistent error is of order O(h2) which is better than

the two dimensional Zienkiewicz-type element proposed in [14]. In fact, the phenomenon that

the consistency error can perform better than the approximation error has seldom been reported

in literatures.

The paper is organized as follows. The rest of this section gives some basic notations.

Section 2 gives the description of the class of rectangular finite elements. Section 3 gives the

description of the new plate elements. Section 4 shows their convergence. Section 5 gives some

numerical results for the new plate element.

Let n be a positive integer. Given a nonnegative integer k and a bounded domain G ⊂ Rn

with boundary ∂G, let Hk(G), Hk
0 (G), ‖ · ‖k,G and | · |k,G denote the usual Sobolev spaces,

norm and semi-norm respectively. Let (·, ·) denote the inner product of L2(Ω).

We will use α, β, γ to denote n dimensional multi-indexes. Define

∂α =
∂|α|

∂xα1

1 · · · ∂xαn
n
, |α| = α1 + · · ·+ αn.

A finite element can be represented by a triple (T, PT , DT ) with T the geometric shape,

PT the shape function space and DT the vector of degrees of freedom, provided that DT is

PT -unisolvent (see [5]).

Let Ω be a bounded polyhedron domain of Rn. For mesh size h with h → 0, let Th be

a partition of Ω corresponding to a finite element (T, PT , DT ), and let Vh, Vh0 be the finite

element spaces corresponding to the element and Th. Throughout this paper, we assume that

{Th} is shape regular.

For a subset B ⊂ Rn and a nonnegative integer r, let Pr(B) be the space of all polynomials

defined on B with degree not greater than r, and Qr(B) the space of all polynomials with

degree in each variable not greater than r.


