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Abstract

A numerical method based on finite difference method with variable mesh is given for

self-adjoint singularly perturbed two-point boundary value problems. To obtain parameter-

uniform convergence, a variable mesh is constructed, which is dense in the boundary layer

region and coarse in the outer region. The uniform convergence analysis of the method is

discussed. The original problem is reduced to its normal form and the reduced problem is

solved by finite difference method taking variable mesh. To support the efficiency of the

method, several numerical examples have been considered.
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1. Introduction

The problem in which a small parameter multiplies to the highest derivative arise in various
fields of science and engineering, for instance, fluid mechanics, fluid dynamics, elasticity, quan-
tum mechanics, chemical reactor theory, hydrodynamics etc. A large number of papers and
books have been published describing various methods for solving singular perturbation prob-
lems, see, e.g., Axelsson et al. [2], Bellman [3], Bender and Orszag [4], Cole and Kevorkian [5],
Eckhaus [7], Hamker and Miller [10], O’Malley [13], Nayfeh [16], Van Dyke [22]

Niijima [17] gave uniformly second order accurate difference schemes for reaction-diffusion
equations, whereas Miller [14] gave sufficient condition for the uniform first-order convergence
of a general three-point difference scheme. Parameter-uniform numerical methods [9, 15] are
methods whose numerical approximations UN satisfy error bounds of the form

‖uε − UN‖ ≤ Cϑ(N), ϑ(N) → 0 as N →∞,

where uε is the solution of the continuous problem, ‖.‖ is the maximum pointwise norm, N

is the number of mesh points (independent of ε) used and C is a positive constant which is
independent of both ε and N . In other words, the numerical approximations UN converge to
uε for all values of parameter ε in the range 0 < ε ¿ 1.

It is well-known that standard discretization methods for solving singular perturbation
problems are unstable and fail to give accurate results when the perturbation parameter ε

is small. Therefore, it is important to develop suitable numerical methods for these problems,
whose accuracy does not depend on the parameter value ε, i.e., the methods are convergent
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ε-uniformly [6,8,20]. In this paper, the strategy and the proposed method based on a suitably
designed fitted mesh has been shown to converge with ϑ(N) = N−1 ln N .

In this paper, we consider the following self-adjoint singularly perturbed two-point boundary
value problem

Ly ≡ −ε(p(x)y′)′ + q(x)y = f(x), (1.1)

for 0 ≤ x ≤ 1 with the natural boundary conditions

y(0) = α, y(1) = β, (1.2)

where α, β are given constants and ε is a small positive parameter (0 < ε ¿ 1). Further assume
that the coefficients p(x), q(x) and the function f(x) are smooth and satisfy

p(x) ≥ η1 > 0, p′(x) ≥ 0, q(x) ≥ η2 > 0.

Under these conditions, the operator L admits the maximum principle [18].
In general finding the numerical solution of a second order boundary value problem with y′

term is more difficult as compare to a second order boundary value problem without y′ term,
therefore we first reduce (1.1) to its normal form and then the reduced problem is solved by
finite difference scheme using arithmetic mesh.

Briefly, outline is as follows. In Section 2, we give description of the method. The derivation
of the difference scheme has been given in Section 3. The idea how to choose the mesh has
been given in Section 4, whereas the parameter uniform-convergence of the scheme is given in
Section 5. To demonstrate the efficiency of the method some numerical experiments have been
solved in Section 6 and finally the conclusion has been presented in Section 7.

2. Description of the Method

Eq. (1.1) can be rewritten as

y′′ + P (x)y′ + Q(x)y = F (x), (2.1)

where

P (x) =
p′(x)
p(x)

, Q(x) = − q(x)
εp(x)

and F (x) = − f(x)
εp(x)

.

By the transformation
y(x) = U(x)V (x), (2.2)

Eq. (2.1) can be written as its normal form:

V ′′(x) + A(x)V (x) = G(x), (2.3)

with

V (0) =
y(0)
U(0)

= γ, V (1) =
y(1)
U(1)

= δ, γ, δ ∈ R, (2.4)

where

A(x) = Q(x)− 1
2
P ′(x)− 1

4
(P (x))2,

G(x) = F (x) exp
(

1
2

∫ x

P (ζ) dζ

)
, U(x) = exp

(
−1

2

∫ x

P (ζ) dζ

)
.


