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Abstract

In this paper we study the convergence of adaptive finite element methods for the gen-

eral non-affine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with

hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator

reduction and Döfler marking strategy, convergence of the adaptive finite element methods

for the general second-order elliptic partial equations is proved. Our analysis is effective

for all conforming Qm elements which covers both the two- and three-dimensional cases in

a unified fashion.
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1. Introduction

The adaptive finite element method (AFEM) is an efficient and reliable tool in the numeri-

cal solution of partial differential equations. The typical structure of the adaptive algorithm is

made up of four modules: “Solve”, “Estimate”, “Mark”, and “Refine”. Even though adaptivity

has been a fundamental tool of engineering and scientific computing for about three decades,

the convergence analysis is rather recent. It started with Döfler [15], who introduced a crucial

marking (from now on called Döfler’s marking) and proved the strict energy reduction for the

Laplacian provided the initial mesh T0 satisfies a fineness assumption. By introducing the con-

cept of data oscillation and the interior node property, Morin et al. [21,22] removed restriction

on the initial mesh T0 and proved the convergence of AFEM. Very recently, Cascon et al. es-

tablished the convergence of the self-adjoint second order elliptic problem without interior node

property [9]. All of these results are based on an important tool, i.e., Galerkin-orthogonality.

There are some results about nonstandard finite element methods in the literature. Carstensen

and Hoppe proved the convergence of adaptive nonconforming and mixed finite element meth-

ods [7, 8]. One key ingredient of these papers is the so-called “quasi-orthogonality”. This

* Received December 31, 2008 / Revised version received July 30, 2009 / Accepted November 6, 2009 /

Published online May 1, 2010 /



622 X.Y. ZHAO, S.P. MAO AND Z.C. SHI

technique is extended to the high order mixed finite element methods for the Poisson equation

in [11]. So far, all the theoretical results have been limited to triangular or tetrahedral meshes.

The objective of this paper is to study the convergence of the adaptive conforming quadri-

lateral and hexahedral element methods. Since quadrilateral and hexahedral elements have

been widely used in practical computing, it is important to study the adaptive algorithms for

these general non-affine equivalent finite elements. As we know, local refinements on triangular

or tetrahedral meshes are well developed, including newest-vertex-bisection, longest edge bisec-

tion and red-green refinement. However, the implementation of local refinement on quadrilateral

and hexahedral meshes is, in some sense, more difficult than that on triangular or tetrahedral

meshes. Nowadays, most researchers in the field of adaptive quadrilateral or hexahedral ele-

ment methods use the so called 1-irregular mesh (see Section 3). By establishing some lemmas

such as quasi-orthogonality, estimator reduction and so on, we finally prove the convergence

of adaptive finite element methods on 1-irregular quadrilateral and hexahedral meshes for the

general second-order elliptic partial equations, in which we can conquer the difficulties due to

the non-affine mapping.

The rest of this paper is organized as follows. In the next section, we present the preliminary

including the notation and the problem under consideration which is followed by the description

of some concepts like shape regularity, hanging node and 1-irregular mesh. In Section 4, we

prove the convergence of the corresponding adaptive algorithms. Since 1-irregular meshes are

not conforming, the degrees of freedom on edges with hanging nodes must be constrained. The

problem of how to assemble a symmetric positive definite stiff matrix will be discussed in Section

5 which also covers some numerical experiments. Conclusions will be presented in Section 6.

2. Problem and General Notations

Let Ω ∈ Rd (d ∈ {2, 3}) be a bounded, polyhedral domain with boundary Γ := ∂Ω. We

assume that the initial mesh T0 is a conforming quadrilateral or hexahedral partition of the

domain Ω. We consider a homogeneous Dirichlet boundary value problem for a linear second

order elliptic partial differential equation(PDE):

{
Lu := −div(A∇u) + b · ∇u+ cu = f, in Ω,

u = 0, on ∂Ω.
(2.1)

We assume

• A = (aij)d×d: Ω 7→ Rd×d is symmetric positive definite and V-elliptic on Ω and aij ∈

W 1,∞(Ω)(i, j = 1, 2, · · · , d);

• b = (bk)d×1 ∈ (W 1,∞(Ω))d; c ∈ L∞(Ω) and c ≥ 0; f ∈ L2(Ω).

The weak formulation of (2.1) reads as follows: Find u ∈ H1
0 (Ω) such that

a(u, v) := (A∇u,∇v) + (b · ∇u, v) + (cu, v) = (f, v), ∀v ∈ H1
0 (Ω). (2.2)

We denote by ‖ · ‖a,Ω the energy norm

‖w‖2
a,Ω :=

∫

Ω

A∇w · ∇w + cw2, ∀w ∈ H1
0 (Ω),


