Journal of Computational Mathematics http://www.global-sci.org/jcm
Vol.28, No.5, 2010, 606-620. doi:10.4208 /jcm.1003-m0003

DISSIPATIVE NUMERICAL METHODS FOR THE
HUNTER-SAXTON EQUATION"

Yan Xu
Department of Mathematics, University of Science and Technology of China,
Hefei 230026, China
Email: yruQustc.edu.cn
Chi-Wang Shu
Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
Email: shu@dam.brown.edu

Abstract

In this paper, we present further development of the local discontinuous Galerkin (LDG)
method designed in [21] and a new dissipative discontinuous Galerkin (DG) method for
the Hunter-Saxton equation. The numerical fluxes for the LDG and DG methods in this
paper are based on the upwinding principle. The resulting schemes provide additional
energy dissipation and better control of numerical oscillations near derivative singularities.
Stability and convergence of the schemes are proved theoretically, and numerical simulation
results are provided to compare with the scheme in [21].

Mathematics subject classification: 66M60, 37K10
Key words: Discontinuous Galerkin method, Local discontinuous Galerkin method, dissi-
pation, Hunter-Saxton equation, Stability.

1. Introduction

In this paper, we present further development of the local discontinuous Galerkin (LDG)
method designed in [21] and a new dissipative discontinuous Galerkin (DG) method for the
Hunter-Saxton (HS) equation

Uggt + 2UgUgy + Ulgry = 0. (11)

In [21], we developed a LDG method for the HS type equations and gave a rigorous proof for its
energy stability. In this method the basis functions used are discontinuous in space. The LDG
discretization also results in a high order accurate, extremely local, element based discretization.
In particular, the LDG method is well suited for hp-adaptation, which consists of local mesh
refinement and/or the adjustment of the polynomial order in individual elements. Numerical
simulation shows that the LDG method in [21] approximates the dissipative regularization
and the dispersive regularization, as well as continuous solutions of the original HS equation
(with possibly discontinuous derivatives) quite well. However, when the derivative has a big
jump discontinuity, the LDG solution for the derivative contains spurious numerical oscillations,
which are controlled by a nonlinear limiter in [21]. In this paper, we attempt to improve
the performance of the LDG method in its control on spurious numerical oscillations near
derivative singularities, without sacrificing its accuracy and provable stability. We also design

* Received February 25, 2009 / Revised version received May 15, 2009 / Accepted June 18, 2009 /
Published online May 1, 2010 /



Dissipative Numerical Methods for the Hunter-Saxton Equation 607

a new dissipative DG method with the same improved numerical performance and provable
convergence for the piecewise constant case.

The DG method is a class of finite element methods, using discontinuous, piecewise polyno-
mials as the solution and the test space. It was first designed as a method for solving hyperbolic
conservation laws containing only first order spatial derivatives, e.g. Reed and Hill [15] for solv-
ing linear equations, and Cockburn et al. [2-4,6] for solving nonlinear equations. It is difficult to
apply the DG method directly to the equations with higher order derivatives. The LDG method
is an extension of the DG method aimed at solving partial differential equations (PDEs) con-
taining higher than first order spatial derivatives. The first LDG method was constructed by
Cockburn and Shu in [5] for solving nonlinear convection diffusion equations containing second
order spatial derivatives. Their work was motivated by the successful numerical experiments
of Bassi and Rebay [1] for the compressible Navier-Stokes equations. The idea of the LDG
method is to rewrite the equations with higher order derivatives into a first order system, then
apply the DG method on the system. The design of the numerical fluxes is the key ingredient
to ensure stability. The LDG techniques have been developed for convection diffusion equa-
tions (containing second derivatives) [5], nonlinear one-dimensional and two-dimensional KdV
type equations [19,23] and the Camassa-Holm equation [20]. Recently, there is a review paper
on the LDG methods for high-order time-dependent partial differential equations [22]. More
general information about DG methods for elliptic, parabolic and hyperbolic partial differential
equations can be found in the two special journal issues devoted to the DG method [7, 8], as
well as in the recent books and lecture notes [9,14,16,17].

This paper is organized as follows. In Section 2, we present and analyze our improved,
dissipative LDG method for the HS type equation (1.1). We give a proof of the energy stability
in Section 2.3. In Section 3, we present a new dissipative DG method for the HS equation.
Stability for general case is proved, as well as convergence for the piecewise constant P° case.
Section 4 contains numerical results to compare with the results in [21] and to demonstrate the
accuracy and capability of the methods. Concluding remarks are given in Section 5.

2. The Dissipative LDG Method for the HS Equation

2.1. Notation

We denote the mesh in [0, L] by I; = [xj_% , xj+%], for j =1,...,N. The center of the cell is
;= %(x];% +a; 1) and the mesh size is denoted by h; = ;1 —x; 1, with h = maxi<j<n h;
being the maximum mesh size. We assume that the mesh is regular, namely that the ratio
between the maximum and the minimum mesh sizes stays bounded during mesh refinements.
We define the piecewise-polynomial space V}, as the space of polynomials of the degree up to k

in each cell I}, i.e.
Vi={vel*Q): veP*I) forxel;, j=1,...,N}.

Note that functions in V}, are allowed to have discontinuities across element interfaces.
The solution of the numerical scheme is denoted by wj, which belongs to the finite element
space V. We denote by (uh);f+l and (uh);rl the values of up at 2, 1, from the right cell
2 2
I 11, and from the left cell I}, respectively. We use the usual notations [up] = thr —u, and
Up, = %(u: +u,, ) to denote the jump and the mean of the function uy, at each element boundary

point, respectively.



