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Abstract

In this paper, we present the theory and numerical implementation for a 2-D thermal

inhomogeneity through the dynamical probe method. The main idea of the dynamical

probe method is to construct an indicator function associated with some probe such that

when the probe touch the boundary of the inclusion the indicator function will blow up.

From this property, we can get the shape of the inclusion. We will give the numerical

reconstruction algorithm to identify the inclusion from the simulated Neumann-to-Dirichlet

map.
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1. Introduction

Let Ω be a bounded domain in R2 with C2 boundary ∂Ω. We consider a heat conductor Ω
with an inclusion D such that D ⊂ Ω, Ω \D is connected and the boundary ∂D of D is of class
C1,α (0 < α ≤ 1). Let the heat conductivity γ(x) in Ω be given as follows:

γ(x) =

{
1 for x ∈ Ω \D

k for x ∈ D

with a positive constant k which is not 1. That is, by using the characteristic function χD of
D, γ(x) is given as γ(x) = 1 + (k − 1)χD.

Here Ω could be a cross section of a heat conductive bar which contains an unknown inclusion
with a uniform cross section D. We are concerned with a thermographic nondestructive testing
to identify D. This testing is to identify D from the measurements which apply heat flux
(sometime called thermal load) to ∂Ω many times and measure the corresponding temperature
on ∂Ω. For more details, the readers can refer to [15], [16] and the references therein. In this
paper, we will provide both theoretical and numerical schemes for this testing.
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First of all, we will give some notations which will be used throughout this paper. For a
set B, B × (T1, T2) and B × (0, T ) are denoted by B(T1,T2) and BT , respectively. Also, for
p, q ∈ Z+ := N ∪ {0} or p = 1

2 , Hp(Ω),Hp(∂Ω) and Hp,q(ΩT ) denote the usual Sobolev spaces,
where p and q in Hp,q(ΩT ) denote the regularity with respect to x and t, respectively (cf. [12]).
Further, for an open set U ⊂ R3 with Lipschitz boundary ∂U and p, q ∈ Z+, Hp,q(U) is defined
similar to Hp,q(ΩT ). That is g ∈ Hp,q(U) if and only if there exists g ∈ Hp,q(R3) with g = g
in U . The norm ||g||Hp,q(U) of g defined by

||g||Hp,q(U) := inf
{||g||Hp,q(R3);g ∈ Hp,q(R3) and g|U = g

}
.

Moreover, a function f(x, t) is in L2((0, T ); X) if f(·, t) ∈ X for almost all t ∈ (0, T ) and

||f ||2L2((0,T );X) =
∫ T

0

||f(·, t)||2Xdt < ∞.

The forward problem for the thermographic nondestructive testing is to find a unique weak
solution u = u(f) ∈ H1,0(ΩT ) which satisfies

{
PDu(x, t) := ∂tu(x, t)− divx(γ(x)∇xu(x, t)) = 0 in ΩT

∂νu(x, t) = f(x, t) in ∂ΩT , u(x, 0) = 0 for x ∈ Ω
(1.1)

for a given f ∈ L2((0, T ); (H1/2(∂Ω))∗). Namely, by assuming the initial temperature of a heat
conductive medium Ω is 0, determine the temperature u = u(f) induced in ΩT after applying
the heat flux f on ∂ΩT .

By a weak solution u = u(f) ∈ H1,0(ΩT ) of Problem (1.1), we mean a function u = u(f)
which satisfies ∫

ΩT

(−u∂tϕ + γ(x)∇xu · ∇xϕ)dxdt =
∫

∂ΩT

fϕ|∂ΩT
dσdt

for all
ϕ ∈ W (ΩT ) :=

{
v ∈ H1,0(ΩT ); ∂tv ∈ L2((0, T ); (H1(Ω))∗)

}

with ϕ(x, T ) = 0 for all x ∈ Ω.

It is well known that the boundary value problem (1.1) is well posed (see [17]). That is
there exists a unique solution u = u(f) ∈ H1,0(ΩT ) to (1.1) and u(f) depends continuously
on f ∈ L2((0, T ); (H1/2(∂Ω))∗). Based on this, we define the Neumann-to-Dirichlet map ΛD :
L2((0, T ); (H1/2(∂Ω))∗) → L2((0, T ); H1/2(∂Ω)) by ΛD(f) = u(f)|∂ΩT

.
Now, we take the Neumann-to-Dirichlet map ΛD as measured data for our nondestructive

testing. Then, our inverse problem is to reconstruct the unknown inclusion D from ΛD.
In [3], authors gave a reconstruction procedure for one space dimensional case. It is an

analogue of the probe method which was introduced by Ikehata [7] to identify the shape of
unknown inclusion in a stationary heat conductive medium. They gave a theory on how to
adapt the probe method for the stationary heat conductive case and provided a reconstruction
scheme identifying an inclusion which can depend on time for one space dimensional case.
Below, we will refer this kind of dynamical version of the probe method by dynamical probe
method. Further, Isakov, Kim, and Nakamura [8] extended this argument and established the
foundation for dynamical probe method.

Isakov, Kim, and Nakamura gave the proof of probe method for the three dimensional case
in [8]. As the proof is quite different for the two space dimensional case, in this work we will


