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Abstract

Asymptotic error expansions in H1-norm for the bilinear finite element approximation

to a class of optimal control problems are derived for rectangular meshes. With the rectan-

gular meshes, the Richardson extrapolation of two different schemes and an interpolation

defect correction can be applied. The higher order numerical approximations are used to

generate a posteriori error estimators for the finite element approximation.
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1. Introduction

The aim of this paper is to discuss the asymptotic behavior of the finite element approxi-
mation for a model optimal control problem described as follows:





min
u∈K

{
1
2
||y − zd||2H +

1
2
||u||2U

}

−div (A∇y) = f + Bu in Ω,

y|∂Ω = 0,

(1.1)

where Ω is an open bounded domain in Rn with Lipschitz boundary ∂Ω, L2(Ω) stands for the
usual L2-inner product space, K is a nonempty closed convex set in L2(Ω), f , zd ∈ L2(Ω), B

is a continuous linear operator from U = L2(Ω) to L2(Ω), H = L2(Ω), and

A(·) = (ai,j(·))n×n ∈ (L∞(Ω))n×n
,

such that there is a constant σ > 0 satisfying that for any vector X = (x1, x2, . . . , xn) ∈ Rn

XT A(x)X ≥ σ||X||2Rn for almost all x ∈ Ω,
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where

||X||Rn =

(
n∑

i=1

x2
i

)1/2

.

In this paper, we only consider the two dimensional problem, i.e., n = 2.
Problem (1.1) is crucial in many engineering applications see, e.g., [26, 32]. Finite element

method is one of the efficient numerical methods for solving (1.1); the literature in this aspect
is huge (see, e.g., [1–3, 13]). Systematic introduction to the finite element method for partial
differential equations and optimal control problems are available in, for example, [10,26,32]. At
present there are extensive theoretical studies of the finite element approximation for various
optimal control problems, see, e.g., [1,8,35] for a priori error estimates, and [2,3,9,28,29] for a
posteriori error estimates. Very recently, superconvergence has been considered in [8,11,27,31]
for Galerkin finite element methods and in [8] for mixed finite element methods.

In the present paper we study two numerical approaches of higher accuracy, namely, [11,27,
31] the Richardson extrapolation schemes and an interpolation defect correction method in the
H1-norm.

As an efficient numerical method to increase the accuracy of approximations, the Richardson
extrapolation has been demonstrated in [30] for the difference method, in [5–7, 12, 14, 15, 17–
22, 24, 25, 33, 34, 37–39] for the (Galerkin and Petrov-Galerkin) finite element method and the
mixed finite element method, in [16, 36] for the collocation method and the boundary element
method, respectively.

The defect correction of (Galerkin and Petrov-Galerkin) finite elements by means of an
interpolation postprocessing technique is another numerical method to obtain approximations
of higher accuracy, which has been studied for a wide variety of models. See, for example,
[4, 6, 17,18,21,23] and the references cited therein.

This paper is organized as follows. In Section 2, the approximation subspace and the vari-
ational formula of (1.1) are provided. Also, the asymptotic expansion of the finite element
approximation is presented in this section for the future need. To the best of our knowledge,
the asymptotic expansions are new in that they are obtained under the condition that the
mesh is uniform in x- or y-direction (not both x- and y-direction), which is different from those
presented in the previous literatures (see, e.g., [7]). Section 3 is devoted to investigating the
asymptotic expansions of the exact solution to the model problem in the H1-norm. Two numer-
ical approaches of the Richardson extrapolation schemes are presented in Section 3. Section
4 deals with an interpolation defect correction approximation in the H1-norm based on the
results given in Section 3. Furthermore, at the ends of Sections 3 and 4, a posteriori error
estimators are furnished as by-products of these numerical solutions with higher convergence
rates. Some related problems are addressed in Section 5.

2. The Asymptotic Expansion

In this section we first give the weak variational formula and the finite element method for
the convex distributed optimal control problem (1.1). To this end, we denote the standard
Sobolev spaces by Wm,q(Ω) on the domain Ω with the norm || · ||m,q and the seminorm | · |m,q.
Also, we denote Wm,2(Ω) by Hm(Ω) with the norm || · ||m and the seminorm | · |m. We set
H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}. In addition, throughout the paper, C stands for a generic
positive constant, independent of the mesh size h, whose specific value depends on the context


