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Abstract

For the linear finite element solution to the Poisson equation, we show that supercon-

vergence exists for a type of graded meshes for corner singularities in polygonal domains.

In particular, we prove that the L2-projection from the piecewise constant field ∇uN to the

continuous and piecewise linear finite element space gives a better approximation of ∇u in

the H1-norm. In contrast to the existing superconvergence results, we do not assume high

regularity of the exact solution.
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1. Introduction

Let Ω ⊂ R2 be a bounded polygonal domain. We shall consider the linear finite element
approximation for the Poisson equation

−∆u = f in Ω, u = 0 on ∂Ω. (1.1)

We are interested in the case when Ω is concave, and thus the solution of (1.1) possesses corner
singularities at vertices of Ω where some of the interior angles are greater than π.

By the regularity theory, the solution u is in H1+β(Ω) with β = mini{π/αi, 1}, where αi
are interior angles of the polygonal domain Ω. It is easy to see that when the maximum angle
is larger than π, i.e., Ω is concave, u /∈ H2(Ω), and thus the finite element approximation based
on quasi-uniform grids will not produce the optimal convergence rate. Graded meshes near the
singular vertices are employed to recovery the optimal convergence rate. Such meshes can be
constructed based on a priori estimates [3,4,6,24,25,31,37] or on a posteriori analysis [9,12,39].
In this paper, we shall consider the approach used in [6, 31], and in particular, focus on the
linear finite element approximation of (1.1).

In [6, 31], a sequence of linear finite element spaces VN ⊂ H1
0 (Ω) is constructed, such that

‖∇(u− uN )‖L2(Ω) ≤ CN−1/2‖f‖L2(Ω), ∀f ∈ L2(Ω), (1.2)

where uN = uVN is the finite element approximation and N = dim VN . The convergence rate
N−1/2 in (1.2) is the best possible rate we can expect for the linear element, and the solution
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uN is the best approximation (i.e., the projection) of u into VN in the H1 semi-norm. We
cannot find a better approximation to u in the space VN measured in the H1 semi-norm.

The main contribution of this paper is to demonstrate that appropriate post-processing of
the piecewise constant vector function ∇uN will improve the convergence rate. More precisely,
let VN denote the space of continuous and piecewise linear finite element functions. Note that
VN is bigger than VN since it also contains nodal basis of boundary nodes. For any u ∈ L2(Ω),
denote by

QN : L2(Ω) 7→ VN , (QNu, vn)L2 := (u, vn)L2 , ∀vn ∈ VN ,

the L2-projection to VN , and for u ∈ H1(Ω),

QN (∇u) := QN (∂xu, ∂yu) = (QN (∂xu), QN (∂yu)) ∈ VN × VN .

Then on appropriate graded meshes and for any δ > 0, we shall show

‖∇u−QN (∇uN )‖L2(Ω) ≤ CN−5/8+δ‖f‖H1(Ω), ∀f ∈ H1(Ω), (1.3)

where C depends only on the interior angles of Ω, the initial triangulation T0 of Ω, and the
constant δ. Therefore, we obtain a better approximation of ∇u based on existing information
on the mesh and corresponding matrices. Note that instead of the inversion of the stiffness
matrix, the computation of QN (∇uN ) only involves the inversion of the mass matrix. Follow-
ing our diagonal scaling technique in Section 2, the preconditioned conjugate gradient (PCG)
method with the diagonal pre-conditioner will be convergent very quickly. Consequently, the
computational cost of QNuN is negligible comparing with that of uN .

The improved convergence rate (1.3) is known as superconvergence in the literature. Let
uI ∈ VN be the nodal interpolation of u. Our proof of (1.3) is based on the following super-
closeness between uN and uI in VN :

‖∇uI −∇uN‖L2(Ω) ≤ CN−5/8+δ‖f‖H1(Ω), ∀f ∈ H1(Ω). (1.4)

Our approach can be easily modified to prove a similar result for average type recovery
scheme [47] or polynomial preserving recovery scheme [45]. For example, let us define an
average type recovery scheme by R : ∇VN 7→ VN × VN

R(∇uN )(xi) =

∑
τ∈ωi |τ |∇uN |τ
|ωi|

, for all vertices xi ∈ T ,

where ωi is the patch including the vertex xi, i.e., the union of all triangles containing xi, and
| · | is the two dimensional Lebesgue measure. Then a similar estimate

‖∇u−R(∇uN )‖L2(Ω) ≤ CN−5/8+δ‖f‖H1(Ω), ∀f ∈ H1(Ω), (1.5)

holds. The average type recovery involves only simple function evaluation and arithmetic
operations, and thus is more computationally favorable.

The idea of post-processing the solution in the L2-norm for a better approximation has been
widely addressed. For example, see the early paper [21] in 1974. When the solution u is smooth
enough, the superconvergence theory is well estabilished. See [5, 7, 10, 13–15, 27, 29, 36, 38, 46]
for the super-closness (1.4); see [7, 15, 22, 28, 30, 41–44] for the superconvergence of recovered
gradient (1.3) or (1.5). Analogue of (1.3), (1.4), and (1.5) on quasi-uniform meshes are usually
proved with the assumption u ∈ H3(Ω)∩W 2,∞(Ω), which is not realistic for corner singularities.


