
Journal of Computational Mathematics

Vol.27, No.4, 2009, 459–473.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2009.27.4.013

A COMPARISON OF DIFFERENT CONTRACTION METHODS
FOR MONOTONE VARIATIONAL INEQUALITIES*

Bingsheng He Xiang Wang and Junfeng Yang

Department of Mathematics, Nanjing University, Nanjing 210093, China

Email: hebma@nju.edu.cn

Abstract

It is interesting to compare the efficiency of two methods when their computational

loads in each iteration are equal. In this paper, two classes of contraction methods for

monotone variational inequalities are studied in a unified framework. The methods of

both classes can be viewed as prediction-correction methods, which generate the same test

vector in the prediction step and adopt the same step-size rule in the correction step.

The only difference is that they use different search directions. The computational loads of

each iteration of the different classes are equal. Our analysis explains theoretically why one

class of the contraction methods usually outperforms the other class. It is demonstrated

that many known methods belong to these two classes of methods. Finally, the presented

numerical results demonstrate the validity of our analysis.

Mathematics subject classification: 65K10, 90C25, 90C30.

Key words: Monotone variational inequalities, Prediction-correction, Contraction methods.

1. Introduction

Let Ω be a nonempty closed convex subset of Rn and F be a continuous mapping from Rn

into itself. A variational inequality problem, denoted by VI(Ω, F ), is to determine a vector
u∗ ∈ Ω such that

(u− u∗)T F (u∗) ≥ 0, ∀ u ∈ Ω. (1.1)

VI(Ω, F ) problem includes nonlinear complementarity problem (when Ω = Rn
+) and system of

nonlinear equations (when Ω = Rn) as its special cases and thus it has many applications [3,5].
The mapping F is said to be uniformly strong monotone (resp. monotone) on Ω if

(u− v)T (F (u)− F (v)) ≥ µ‖u− v‖2, ∀u, v ∈ Ω,

where µ > 0 (resp. µ = 0) is a constant, F is Lipschitz continuous on Ω in the sense that there
is a constant L > 0 such that

‖F (u)− F (v)‖ ≤ L‖u− v‖, ∀u, v ∈ Ω.

Throughout this paper we assume that the operator F is monotone and Lipschitz continuous
on Ω, and the solution set of VI(Ω, F ), denoted by Ω∗, is nonempty.

In the literature, there are different types of methods for monotone VI(Ω, F ) such as
projection-contraction methods, continuous methods and cutting plane methods. Among these
methods, the projection-contraction type of methods have attracted much attention for their
simplicity. Let PΩ(v) denote the projection of v onto Ω and uk be the given current iterate. The
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simplest projection method is the Goldstein-Levitin-Polyak approach [4, 11] which iteratively
updates uk+1 according to the formula

uk+1 = PΩ[uk − βkF (uk)]. (1.2)

This method produces a convergent sequence for uniformly strong monotone VI(Ω, F ) when
0 < βL ≤ βk ≤ βU < 2µ/L2. The basic projection method (1.2) is called an explicit method
because all the terms in its right hand side are known. There are also implicit approaches
(whose right hand side includes the unknown vector) such as the Douglas-Rachford operator
splitting method [2, 12] which determines uk+1 by the recursion form

uk+1 = PΩ[uk − βkF (uk)] + (F (uk)− F (uk+1)) (1.3)

and the proximal point algorithm [13] which generates uk+1 by

uk+1 = PΩ[uk − βkF (uk+1)]. (1.4)

These implicit methods produce convergent sequences for monotone VI(Ω, F ) when 0 < βL ≤
βk ≤ βU < +∞. The sequence {uk} generated by (1.4) satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − ‖uk − uk+1‖2, ∀u∗ ∈ Ω∗.

The above inequality means that the new iterate uk+1 is closer to the solution set than the
current point uk. According to [1], the proximal point algorithm belongs to the class of Fejér
contraction methods under Euclidean norm, or simply, contraction methods.

The main disadvantage of the implicit methods is that a subproblem should be solved in
each iteration. Setting the uk+1 in (1.3) and (1.4) by uk, we get the form (1.2), and the explicit
method is convergent only for uniformly strong monotone (or co-coercive) VI(Ω, F ) when the
parameter βk is rigorously chosen. Instead of directly taking the left hand side of (1.2) as the
new iterate, we set

ũk = PΩ[uk − βkF (uk)] (1.5)

as a predictor, the new iterate uk+1 (or called as corrector) will be generated by moving uk in
directions designed based on uk and ũk. Such methods can be viewed as prediction-correction
methods [9].

There are a number of contraction methods in the literature which belong to the prediction-
correction methods. The purpose of this paper is to analyze the efficiency of the different
methods whose computational loads in each iteration are equal. The paper is organized as
follows. In section 2, we summarize preliminaries and define some basic concepts which will
be used in this paper. Section 3 presents two criterions of the framework of the projection-
contraction methods. In section 4, we analyze these two classes of methods theoretically and
show that the iterates generated by the second class methods usually get more progress than
those in the first class. Then, in section 5 we give linear and nonlinear applications with
numerical experiments. As predicted by the analysis, the numerical results show the superiority
of a class of methods clearly. Finally we give some conclusion remarks in section 6.

2. Preliminaries

Let G be an n × n positive definite matrix. The projection under G-norm is denoted by
PΩ,G(·), i.e.,

PΩ,G(v) = argmin{‖v − u‖G | u ∈ Ω}.


