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Abstract

In this paper, we study the explicit expressions of the constants in the error estimates

of the lowest order mixed and nonconforming finite element methods. We start with an ex-

plicit relation between the error constant of the lowest order Raviart-Thomas interpolation

error and the geometric characters of the triangle. This gives an explicit error constant

of the lowest order mixed finite element method. Furthermore, similar results can be ex-

tended to the nonconforming P1 scheme based on its close connection with the lowest order

Raviart-Thomas method. Meanwhile, such explicit a priori error estimates can be used as

computable error bounds, which are also consistent with the maximal angle condition for

the optimal error estimates of mixed and nonconforming finite element methods.
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1. Introduction

Finite element methods for the accurate numerical solution of partial differential equations
are of great practical interest in the engineering and scientific computing applications. Up to
now, their mathematical theory such as a priori error estimates have been well established in
the literature, see, e.g., [9, 14, 36]. Let u, uh denote the exact solution of the model problem
and the associated discretized solution, respectively. The convergence analysis of finite element
method is typically of the form

‖u− uh‖ ≤ Chk|u|, (1.1)

where h denotes the maximal diameter of the triangulation, ‖ · ‖ and | · | stand for some
appropriate norm and seminorm in certain function spaces, respectively.

Such a result may not be effective unless the dependence of the constant C is specified.
The classical finite element theories, see, e.g., [9, 14], show that the constant C in (1.1) does
not dependent on the function u, but may dependent on the sine of the minimal angle of the
triangulation for the two dimensional case, which is equivalent to the well-known nondegenerate
assumption or regular assumption of finite element meshes. In fact, the minimal angle condition
for the finite elements can be relaxed, which results in the so-called degenerate elements. Error
estimates for degenerate elements can go back to the works by Babus̆ka and Aziz [5] and by
Jamet [20]; both of them proved the optimal error estimate for the linear Lagrange triangular
element under the assumption that the underlying meshes satisfy the maximal angle condition.
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Since late 1980’s degenerate elements have been extensively studied; interested readers are
referred to [2, 12,22] and references therein.

As is known that there appear various constants in the process to derive the error estimates.
It is good to evaluate these constants explicitly for a quantitative error bound purpose. Actually,
there are some works on an explicit error estimate of the finite element methods, see, e.g.,
[3,6,7,18,21] for linear finite element methods and [25] for bilinear quadrilateral finite element
methods. However, almost all of them are concentrated on the standard conforming finite
element methods, which only involves an explicit interpolation error estimate. To the best of
our knowledge, as far as other type finite element methods are concerned, for example, mixed
elements and nonconforming elements, there seem no explicit error bounds are given. In order
to obtain an explicit error bounds for such type elements, only having the interpolation error
estimate is not enough. The mixed element methods and the nonconforming element methods
need further an explicit bound of the discrete inf-sup constant and of the consistency error,
respectively.

In this paper, we are aim to obtain an explicit error bound for the lowest order mixed finite
element and nonconforming finite element for the second order problems ( [33,34]). Firstly, we
prove some results on the error constants of the Raviart-Thomas interpolation, which plays an
essential role in the a priori error estimates of finite element methods. The technical tool is an
explicit trace theorem on the reference unit triangle. On the other hand, the Babus̆ka-Brezzi
condition is well-known to guarantee the stability of a mixed finite element and play a key
role in the error estimates (cf. [10, 11]). It is also essential to give an explicit expression of
the inf-sup constant. Based on these results we can derive a constructive error bound for the
mixed finite element. Finally, we also obtain an explicit error estimate for the nonconforming
Crouzeix-Raviart [16] element by its close relation to the mixed finite element method (cf.
[4, 26]). Note that Kikuchi and Liu [21] recently derived an explicit interpolation error bounds
for the nonconforming Crouzeix-Raviart element, but that can not implies an explicit bounds
for the finite element error. The explicit a priori error estimates obtained in this paper provide
computable error bounds and can serve as a posteriori error estimates for finite element methods
[1, 35]. Furthermore, our explicit error estimates for the mixed and nonconforming elements
are consistent with the maximal angle condition as the conforming linear Lagrange triangular
element [5, 22].

The rest of the paper is organized as follows. In section 2, we introduce the set-up and
approximation of the model problem along with some notations and preliminary results for
subsequent use. Section 3 presents the an explicit priori error estimate for the lowest order
Raviart-Thomas finite element. Similar estimates are extended to the nonconforming Crouzeix-
Raviart element in section 4. Some numerical experiments are carried out in section 5. Finally,
some comments and extensions of the results are given in section 6.

2. An Explicit Bound of the Inf-Sup Constant

In this section, after recalling the model formulation and some notation, we give a sharp
Friedrichs’ type inequality, based on which we obtain an explicit bound of the inf-sup constant.

Throughout this paper, we denote with small letters the scalar functions, with small bold
fonts the vectorial ones. We will adopt the standard conventions for Sobolev norms and semi-
norms of a function v defined on an open set G:


