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Abstract

In this article, we analyse three related preconditioned steepest descent algorithms,

which are partially popular in Hartree-Fock and Kohn-Sham theory as well as invariant

subspace computations, from the viewpoint of minimization of the corresponding function-

als, constrained by orthogonality conditions. We exploit the geometry of the admissible

manifold, i.e., the invariance with respect to unitary transformations, to reformulate the

problem on the Grassmann manifold as the admissible set. We then prove asymptotical

linear convergence of the algorithms under the condition that the Hessian of the corre-

sponding Lagrangian is elliptic on the tangent space of the Grassmann manifold at the

minimizer.
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1. Introduction

On the length-scale of atomistic or molecular systems, physics is governed by the laws of

quantum mechanics. A reliable computation required in various fields in modern sciences and

technology should therefore be based on the first principles of quantum mechanics, so that ab

initio computation of the electronic wave function from the stationary electronic Schrödinger

equation is a major working horse for many applications in this area. To reduce computational

demands, the high dimensional problem of computing the wave function for N electrons is

often, for example in Hartree-Fock and Kohn-Sham theory, replaced by a nonlinear system of

equations for a set Φ = (ϕ1, · · · , ϕN ) of single particle wave functions ϕi(x) ∈ V = H1(R3).

This ansatz corresponds to the following abstract formulation for the minimization of a suitable

energy functional J (Φ)

Problem 1. Minimize

J : V N → R, J (Φ) = J (ϕ1, · · · , ϕN ) −→ min, (1.1)
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with V N defined via V as above and J is a sufficiently often differentiable functional which is

(i) invariant with respect to unitary transformations, i.e.,

J (Φ) = J (ΦU) = J
(( N∑

j=1

ui,jφj

)N

i=1

)
, (1.2)

for any orthogonal matrix U ∈ R
n×n, and

(ii) subordinated to the orthogonality constraints

〈ϕi, ϕj〉 :=

∫

R3

ϕi(x)ϕj(x)dx = δi,j . (1.3)

In the present article, we shall be concerned with minimization techniques for J along the

admissible manifold characterized by (1.3). The first step towards this will be to set up the

theoretical framework of the Grassmann manifold to be introduced in Section 2, reflecting the

constraints (i) and (ii) imposed on the functional J and the minimizer Φ, respectively. In

applications in electronic structure theory, formulation of the first order optimality (necessary)

condition for the problem (1.1) results in a nonlinear eigenvalue problem of the kind:

AΦϕi = λiϕi, λ1 ≤ λ2 ≤ · · · ≤ λN (1.4)

for N eigenvalues λi and the corresponding solution functions assembled in Φ. In these equa-

tions, the operator AΦ, is a symmetric bounded linear mapping

AΦ : V = H1(R3) → V ′ = H−1(R3)

depending on Φ, so that we are in fact faced with a nonlinear eigenvalue problem. AΦ is called

the Fock operator in Hartree-Fock theory, and Kohn-Sham Hamiltonian in density functional

theory (DFT) respectively. We will illustrate the relation between (1.4) and the minimiza-

tion task above in further detail in Section 3. In this work, our emphasis will rather be on

the algorithmic approximation of the minimizer of J , i.e. an invariant subspace span[Φ] :=

span{ϕ1, · · · , ϕN}, of (1.4), in the corresponding energy space V N than on computation of the

eigenvalues λ1, · · · , λN .

One possible procedure for computing the minimum of J is the so-called direct minimization,

utilized e.g. in DFT calculation, which performs a steepest descent algorithm by updating the

gradient of J , i.e. the Kohn-Sham Hamiltonian or Fock operator, in each iteration step. Direct

minimization, as proposed in [2], is prominent in DFT calculations if good preconditioners are

available and the systems under consideration are large, e.g. for the computation of electronic

structure in bulk crystals using plane waves, finite differences [7] and the recent wavelet code

developed in the BigDFT project (see [45]). In contrast to the direct minimization procedure is

the self consistent field iteration (SCF), which keeps the Fock operator fixed until convergence

of the corresponding eigenfunctions and updates the Fock operator thereafter, see Section 3.

In the rest of this article, we will pursue different variants of projected gradient algorithms

to be compiled in Section 4. In addition, we will (for the case where the gradient J ′(Φ) can

be written as an operator AΦ applied to Φ, as it is the case in electronic structure calculation)

investigate an algorithm based on [4] following a preconditioned steepest descent along geodesics

on the manifold. so that no re-projections onto the admissible manifold are required. It turns


