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Abstract

In this paper, a two-scale higher-order finite element discretization scheme is proposed

and analyzed for a Schrödinger equation on tensor product domains. With the scheme, the

solution of the eigenvalue problem on a fine grid can be reduced to an eigenvalue problem

on a much coarser grid together with some eigenvalue problems on partially fine grids. It

is shown theoretically and numerically that the proposed two-scale higher-order scheme

not only significantly reduces the number of degrees of freedom but also produces very

accurate approximations.
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1. Introduction

Theoretical analysis of the electronic structure of matter is usually based on the energy-levels

and wavefunctions of the many-body particle system. As a result, a number of eigenvalues and

eigenfunctions of the Schrödinger type equations are required to be computed accurately and

efficiently. However, it is a challenging task to solve multi-dimensional eigenvalue problems by

conventional discretization methods, due to storage requirements and computational complex-

ity.

In order to reduce the computational costs, such as the computational time and the storage

requirement, we will introduce a two-scale higher-order finite element discretization scheme

to solve the associated eigenvalue problem. With the scheme, the solution of the eigenvalue

problem on a fine grid can be reduced to an eigenvalue problem on a much coarser grid and

some eigenvalue problems on partially fine grids. It is shown by both theory and numerics

that the scheme is efficient. The work of this paper may be viewed as a generalization of that

in [14, 21, 22], in which some two-scale linear finite element discretizations for solving partial

differential equations in multi-dimensions were developed.
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In the modern electronic structure computation of large scale, the pseudopotential formula-

tions of the Kohn-Sham equations should be used. Note that in the pseudopotentional setting,

the associated effective potentials of the Kohn-Sham equations are smooth [4, 5, 23, 24, 27],

though the original effective potentials are singular. Hence we may start our investigation from

the following Schrödinger equation:

{
− 1

2∆u + V u = λu in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω = (0, 1)3 and the effective potential V is smooth, say, V ∈ W 1,∞(Ω).

We now give a somewhat more detailed description of the main ideas and results in this

paper. Let Sh1,h2,h3

0 (Ω) ⊂ H1
0 (Ω) be the standard triquadratic finite element space associated

with the finite element mesh T h1,h2,h3(Ω) with mesh size h1 in x-direction, h2 in y-direction

and h3 in z-direction, respectively. One prototype scheme to discretize (1.1), say for the first

eigenvalue λ with its corresponding eigenfunction u with
∫
Ω |u|2 = 1, is as follows:

1. Solve (1.1) on a globally coarse grid: Find (uH,H,H , λH,H,H) ∈ SH,H,H
0 (Ω) × R such

that
∫
Ω |uH,H,H |2 = 1 and

∫

Ω

1

2
∇uH,H,H · ∇v + V uH,H,H · v = λH,H,H

∫

Ω

uH,H,H · v, ∀v ∈ SH,H,H
0 (Ω).

2. Solve (1.1) on some partially fine grids in parallel:

Find (uh,H,H , λh,H,H) ∈ Sh,H,H
0 (Ω) × R such that

∫
Ω |uh,H,H |2 = 1 and

∫

Ω

1

2
∇uh,H,H · ∇v + V uh,H,H · v = λh,H,H

∫

Ω

uh,H,H · v, ∀v ∈ Sh,H,H
0 (Ω);

Find (uH,h,H , λH,h,H) ∈ SH,h,H
0 (Ω) × R such that

∫
Ω |uH,h,H |2 = 1 and

∫

Ω

1

2
∇uH,h,H · ∇v + V uH,h,H · v = λH,h,H

∫

Ω

uH,h,H · v, ∀v ∈ SH,h,H
0 (Ω);

Find (uH,H,h, λH,H,h) ∈ SH,H,h
0 (Ω) × R such that

∫
Ω
|uH,H,h|

2 = 1 and

∫

Ω

1

2
∇uH,H,h · ∇v + V uH,H,h · v = λH,H,h

∫

Ω

uH,H,h · v, ∀v ∈ SH,H,h
0 (Ω).

3. Set

uh
H,H,H = uh,H,H + uH,h,H + uH,H,h − 2uH,H,H ,

λh
H,H,H = λh,H,H + λH,h,H + λH,H,h − 2λH,H,H .

If, for example, λH,H,H , λh,H,H , λH,h,H , and λH,H,h are the first eigenvalues of the corresponding

problems, then we can establish the following results (see Theorem 4.1 in Section 4 below)

(∫

Ω

|u − uh
H,H,H |2

)1/2

= O(h3 + H5) and |λ − λh
H,H,H | = O(h4 + H6)


