
Journal of Computational Mathematics, Vol.27, No.2-3, 2009, 299–314.

AN ANISOTROPIC NONCONFORMING FINITE ELEMENT
METHOD FOR APPROXIMATING A CLASS OF NONLINEAR

SOBOLEV EQUATIONS*

Dongyang Shi and Haihong Wang

Department of Mathematics, Zhengzhou University, Zhengzhou 450052, China

Email: shi dy@zzu.edu.cn, waih777@163.com

Yuepeng Du

Department of Computer, Nanyang Institute of Technology, Nanyang 473004, China

Email: nitduyp@163.com

Abstract

An anisotropic nonconforming finite element method is presented for a class of nonlinear

Sobolev equations. The optimal error estimates and supercloseness are obtained for both

semi-discrete and fully-discrete approximate schemes, which are the same as the traditional

finite element methods. In addition, the global superconvergence is derived through the

postprocessing technique. Numerical experiments are included to illustrate the feasibility

of the proposed method.
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1. Introduction

Consider the following nonlinear Sobolev equations [1]







−∇ ·
(

a(u)∇ut

)

−∇ ·
(

b(u)∇u
)

= f(x, t), x ∈ Ω, t ∈ (0, T ],

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where x = (x, y), Ω is a bounded convex domain in R2, ∇ and ∇· denote the gradient and the

divergence operators, respectively; a(u) = a(x, t, u) and b(u) = b(x, t, u) depend on x, t and u.

In (1.1) and below, for notational convenience, we drop the dependence of these coefficients on

x and t. Furthermore, we assume that a(u) and b(u) satisfy the following properties as [2]

(i) There exist constants a0, a1, b0 and b1, such that

0 < a0 ≤ a(u) ≤ a1, 0 < b0 ≤ b(u) ≤ b1. (1.2)

(ii) Both a(u) and b(u) are globally Lipschitz continuous in u, i.e., for some constants Cξ,

they satisfy

|ξ(u1) − ξ(u2)| ≤ Cξ|u1 − u2|, u1, u2 ∈ R, ξ = a, b. (1.3)

In addition, a(u) and b(u) are twicely continuously differentiable with respective to u.
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It is known that Sobolev equations have important applications including the flow of fluids

through fissured rock, the transport problems of humidity in soil, thermodynamics etc. Many

studies have been devoted to conforming finite elements. For example, for linear case, [3] con-

sidered the first-order generalized difference scheme and gave Lp-norm and W 1,p-norm error

estimates by means of the Ritz-Volterra projection; [4] studied two least-squares Galerkin finite

element schemes, which yielded the approximate solutions with optimal accuracy in (L2)2 ×L2

norm and the first-order and second-order accuracy in time, respectively; [5] proposed an H1-

Galerkin mixed finite element method and established optimal error estimates for the semi-

discrete scheme and fully-discrete scheme. For nonlinear case, [6] gave finite difference stream-

line diffusion schemes with convection dominated term, and derived the stability and optimal

error estimates; [7] considered the time stepping along characteristic finite element methods,

and demonstrated optimal convergence rate in the sense of H1 and L2; [2] presented discontin-

uous Galerkin method with penalties and derived L∞(H1) error estimate for the semi-discrete

scheme and L∞(H1) and L2(H1) for the fully-discrete scheme.

However, there are still some defects in the work mentioned above. On the one hand,

although the detailed and systematic theoretical analysis were given in [2-7], there were no

numerical tests except [4] in one-dimension. On the other hand, to the best of our knowledge,

all the known results in the literature are based on the classical regularity assumption or quasi-

uniform assumption on the meshes, i.e., there exists a constant C > 0, such that for all element

K, hK/ρK ≤ C or h/hmin ≤ C, where h = max
K

hK , hmin = min
K

hK , hK and ρK are the

diameter and the superior diameter of all circles contained in K, respectively (see [8] for details).

However, in some cases, the solutions of some elliptic problems may have anisotropic behavior

in some parts of the solution domain. This means that the solutions only vary significantly

in certain directions. An obvious idea to reflect this anisotropy is to use anisotropic meshes

with a finer mesh size in the direction of the rapid variation of the solution and a coarser mesh

size in the perpendicular direction. Besides, some problems may be defined in narrow domain,

for example, in modeling a gap between rotator and stator in an electrical machine, the cost

of calculation will be very high when the regular partition is employed. Therefore, it is a

better choice to employ anisotropic meshes with few degrees of freedom to overcome the above

difficulties. Because the anisotropic elements K are characterized by hK/ρK → ∞ when the

limit is considered as h → 0, the well-known Bramble-Hilbert lemma can not be used directly

in estimating the interpolation error. At the same time, the consistency error estimate, the key

of the nonconforming finite element analysis, will become very difficult to be dealt with, for

there will appear a factor |F |/|K| → ∞ when the estimate is made on the longer sides F of the

element K. It means that the traditional techniques for finite element analysis are no longer

valid.

Recently, there have appeared some studies focusing on the study of convergence, super-

closeness and superconvergence of anisotropic finite element methods. Both conforming and

nonconforming finite elements have been applied to some linear problems, we refer to Acosta

[9-10], Apel [11-13], Duran [14] and Shi [15-25]. Whether the results of the above literature are

valid for nonlinear problems with anisotropic nonconforming elements remains open.

The purpose of this paper is to apply an anisotropic nonconforming finite element method

to (1.1). Firstly, we consider both semi-discrete and backward Euler fully-discrete schemes and

obtain the optimal convergence estimates. By virtue of the special property of the element and

the postprocessing technique, the supercloseness and superconvergence are obtained. Secondly,

we carry out some numerical tests to examine the numerical performance of the element with


