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Abstract

This paper develops a posteriori error estimates of residual type for conforming and

mixed finite element approximations of the fourth order Cahn-Hilliard equation ut +

∆
(
ε∆u−ε−1f(u)

)
= 0. It is shown that the a posteriori error bounds depends on ε−1 only

in some low polynomial order, instead of exponential order. Using these a posteriori error

estimates, we construct an adaptive algorithm for computing the solution of the Cahn-

Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments

are presented to show the robustness and effectiveness of the new error estimators and the

proposed adaptive algorithm.
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1. Introduction

In this paper we derive a posteriori error estimates and develop an adaptive algorithm based

on the error estimates for conforming and mixed finite element approximations of the following

Cahn-Hilliard equation and its sharp interface limit known as the Hele-Shaw flow [2, 35]

ut + ∆
(
ε∆u−

1

ε
f(u)

)
= 0 in ΩT := Ω × (0, T ), (1.1)

∂u

∂n
=

∂

∂n

(
ε∆u−

1

ε
f(u)

)
= 0 in ∂ΩT := ∂Ω × (0, T ), (1.2)

u = u0 in Ω × {0}, (1.3)

where Ω ⊂ RN (N = 2, 3) is a bounded domain with C2 boundary ∂Ω or a convex polygonal

domain, T > 0 is a fixed constant, and f is the derivative of a smooth double equal well

potential taking its global minimum value 0 at u = ±1. In this paper we will consider the

following well-known quartic potential:

f(u) := F ′(u) and F (u) =
1

4
(u2 − 1)2.

For the notation brevity, we shall suppress the super-index ε on uε throughout this paper except

in Section 5.
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The Eq.(1.1) was originally introduced by Cahn and Hilliard [11] to describe the complicated

phase separation and coarsening phenomena in a melted alloy that is quenched to a temperature

at which only two different concentration phases can exist stably. The Cahn-Hilliard equation

has been widely accepted as a good (conservative) model to describe the phase separation and

coarsening phenomena in a melted alloy. The function u represents the concentration of one of

the two metallic components of the alloy. The parameter ε is an “interaction length”, which

is small compared to the characteristic dimensions on the laboratory scale. The Cahn-Hilliard

equation (1.1) is a special case of a more complicated phase field model for solidification of a

pure material [10,27,31]. For the physical background, derivation, and discussion of the Cahn-

Hilliard equation and related equations, we refer to [2, 4, 7, 11, 13, 20, 33, 34] and the references

therein. It should be noted that the Cahn-Hilliard equation (1.1) can also be regarded as the

H−1-gradient flow for the energy functional [26]

Jε(u) :=

∫

Ω

[ 1

2
|∇u|2 +

1

ε2
F (u)

]
dx. (1.4)

In addition to its application in phase transition, the Cahn-Hilliard equation (1.1) has

also been extensively studied in the past due to its connection to the following free boundary

problem, known as the Hele-Shaw problem and the Mullins-Sekerka problem

∆w = 0 in Ω \ Γt, t ∈ [0, T ] , (1.5)

∂w

∂n
= 0 on ∂Ω, t ∈ [0, T ] , (1.6)

w = σκ on Γt, t ∈ [0, T ] , (1.7)

V =
1

2

[∂w
∂n

]

Γt

on Γt, t ∈ [0, T ] , (1.8)

Γ0 = Γ00 when t = 0 . (1.9)

Here

σ =

∫ 1

−1

√
F (s)

2
ds .

κ and V are, respectively, the mean curvature and the normal velocity of the interface Γt, n is

the unit outward normal to either ∂Ω or Γt,

[
∂w

∂n
]Γt

:=
∂w+

∂n
−
∂w−

∂n
,

and w+ and w− are respectively the restriction of w in Ω+
t and Ω−

t , the exterior and interior

of Γt in Ω.

Under certain assumption on the initial datum u0, it was first formally proved by Pego [35]

that, as εց 0, the function

wε := −ε∆uε + ε−1f(uε),

known as the chemical potential, tends to w, which, together with a free boundary Γ :=

∪0≤t≤T (Γt × {t}) solves (1.5)-(1.9). Also uε → ±1 in Ω±
t for all t ∈ [0, T ], as ε ց 0. The

rigorous justification of this limit was carried out by Alikakos, Bates and Chen in [2] under

the assumption that the above Hele-Shaw (Mullins-Sekerka) problem has a classical solution.

Later, Chen [13] formulated a weak solution to the Hele-Shaw (Mullins-Sekerka) problem and

showed, using an energy method, that the solution of (1.1)-(1.3) approaches, as εց 0, a weak

solution of the Hele-Shaw (Mullins-Sekerka) problem. One of the consequences of the connection


