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Abstract

In this paper we propose an affine scaling interior algorithm via conjugate gradient path

for solving nonlinear equality systems subject to bounds on variables. By employing the

affine scaling conjugate gradient path search strategy, we obtain an iterative direction by

solving the linearize model. By using the line search technique, we will find an acceptable

trial step length along this direction which is strictly feasible and makes the objective func-

tion nonmonotonically decreasing. The global convergence and fast local convergence rate

of the proposed algorithm are established under some reasonable conditions. Furthermore,

the numerical results of the proposed algorithm indicate to be effective.
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1. Introduction

In this paper we use an affine scaling interior conjugate gradient path method to analyze

the solution of nonlinear systems subject to the bound constraints on variable:

F (x) = 0, x ∈ Ω = { x | l ≤ x ≤ u }, (1.1)

where F : X → ℜn is a given continuously differentiable mapping and X ⊆ ℜn is an open

set containing the n-dimensional box constraint Ω. The vector l ∈ (ℜ ∪ {−∞})n and u ∈

(ℜ ∪ {+∞})n are specified lower and upper bounds on the variables such that

int(Ω)
def
= { x | l < x < u }

is nonempty, where l < u. The problem (1.1) arises naturally in systems of equations modeling

real-life problems when not all the solutions of the model have physical meaning. For example,

cross-sectional properties of structural elements, dimensions of mechanical linkages, concen-

trations of chemical species, etc., are modeled by nonlinear equations where Ω is the positive

orthant of ℜn or a closed box constraint. In the classical methods for solving the unconstrained

nonlinear equations (1.1) when the function F (x) is a continuously differentiable function, the

Newton method or quasi-Newton method can be used. These methods by using the Jacobian

or version of Newton’s method often solve the unconstrained problem (1.1), which is known to
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have locally very rapid convergence (see, e.g., [3, 4]). However, the Newton methods used for

smooth systems (1.1) does not ensure global convergence, that is, the convergence is only local.

Other methods for solving (1.1) can be found in, e.g., [11, 14].

Many papers about affine-scaling algorithm for solving problems appeared during the last

few years. Sun in [9] gave a convergence proof for an affine-scaling algorithm for convex

quadratic programming without nondegeneracy assumptions, and Ye [12] introduced affine scal-

ing algorithm for nonconvex quadratic programming. Classical trust-region Newton method for

solving the nonlinear system (1.1) and the affine scaling double trust-region approach for solv-

ing the bounded constrained optimization problems are given in [2]. Recently, Bellavia et al.

in [1] further extended the idea and presented an affine scaling trust-region approach for solv-

ing the bounded-constrained smooth nonlinear systems (1.1). However, the search direction

generated in trust-region subproblem must satisfy strict interior feasibility which results in

computational difficulties. In this paper, we introduce an affine scaling interior algorithm via

conjugate gradient path to solve the bound-constrained nonlinear systems (1.1).

In order to describe and design the affine scaling interior conjugate gradient path algorithm

for solving the bound-constrained smooth equations (1.1), we first introduce the squared Eu-

clidean norm of linearize model of the unconstrained systems (1.1) and the augmented quadratic

affine scaling model, and state the affine scaling conjugate gradient path with backtracking inte-

rior point technique for the bound-constrained nonlinear equations in Section 2. In Section 3, we

prove the global convergence of the proposed algorithm. We discuss some further convergence

properties such as strong global convergence and characterize the order of local convergence of

the Newton method in terms of the rates of the relative residuals in Section 4. Finally, the

results of numerical experiments of the proposed algorithm are reported in Section 5.

2. Algorithm

In this section we describe and design the affine scaling conjugate gradient strategy in

association with nonmonotonic interior point backtracking technique for solving the bound-

constrained nonlinear minimization transformed by the bound-constrained systems (1.1) and

present an interior point backtracking technique which enforces the variable generating strictly

feasible interior point approximations to solution of the bound-constrained nonlinear minimiza-

tion.

Bellavia et al. in [1] presented the affine scaling trust-region approach scheme. The basic

idea is based on the trust region subproblem at the kth iteration

min qk(d)
def
=
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s.t. ‖Dkd‖ ≤ ∆k, (2.1)

where F ′ is the Jacobi matrix of F , ∆k is the trust region radius and qk(d) is trusted to be an

adequate representation of the merit function

f(x)
def
=

1

2
‖F (x)‖2. (2.2)

The scaling matrix Dk = D(xk) arises naturally from examining the first-order necessary condi-

tions for the bound-constrained nonlinear minimization transformed by the bound-constrained

problem (1.1), where D(x) is the diagonal scaling matrix such that

D(x)
def
=diag{|v1(x)|−

1

2 , · · · , |vn(x)|−
1

2 } (2.3)


