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Abstract

In this paper, we consider the nonconforming finite element approximations of fourth

order elliptic perturbation problems in two dimensions. We present an a posteriori error

estimator under certain conditions, and give an h-version adaptive algorithm based on the

error estimation. The local behavior of the estimator is analyzed as well. This estimator

works for several nonconforming methods, such as the modified Morley method and the

modified Zienkiewicz method, and under some assumptions, it is an optimal one. Numerical

examples are reported, with a linear stationary Cahn-Hilliard-type equation as a model

problem.
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1. Introduction

The parabolic perturbation problems, such as the Cahn-Hilliard-type equations, are fre-

quently encountered in applications, see, e.g., [12, 14, 20]. Their stationary formations, namely

the corresponding elliptic perturbation problems, are important for both theoretical analysis

and computation. The numerical solution to such problems has been an interesting and prac-

tical topic in computational mathematics. Various finite element methods, both standard and

nonstandard, have been developed for this problem, and their convergences were proven; see,

e.g., [16, 17, 25, 30].

The adaptive finite element methods, in particular the h-version methods, are very useful

for efficient numerical solutions. As to these methods, the key features are a posteriori error

estimation and the strategy of mesh refinement. The a posteriori error estimation can be

treated as an indicator of the distribution of the error on certain mesh. According to the a

posteriori error estimation, the numerical solution can be carried out in the local, parallel or

adaptive ways, see, e.g., [32]. In all these methods, an a posteriori error estimator is utilized

as an indicator of the quality of the mesh.

It is pointed by Bank [9] that the notion of using a posteriori error estimates to measure

and control the error in practical finite element calculations was first suggested by Babuska

and Rheinboldt [5]. The approach in [5] provided the earliest general way for a posteriori

error estimation with firm theoretical foundations. So far, a posteriori error estimation for

conforming finite element methods, especially on second order problems, has been the subject

of extensive investigation, see, e.g., [2, 5, 6, 9–12, 23, 33], the reviews [3, 8, 19, 21, 22] and the
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monographs [4, 7, 27]. However, the treatment of nonconforming methods has been subjected

to sporadic attention. Dari et al. [18] considered the error as a combination of a conforming

part and a nonconforming part, where the nonconforming part is estimated via the difference

between the nonconforming solution and its smooth approximation. The idea has been carried

out on the second order problems, with the help of the orthogonal decomposition (Helmholtz

decomposition) of L2. According to this, many ways were put forward to extend the method for

conforming methods to nonconforming ones; see, e.g., [1] and the references therein. Castensen

et al. [15] followed the idea and developed a technique to present a framework of a posteriori

estimation for a class of nonconforming methods on parallelogram meshes. The framework

has been shown to be effective for problems of second order. Even though the a posteriori

estimation for fourth order problems can date back to [27], however, partially because that few

nonconforming finite element spaces contain a subspace consisting of C1 continuous functions,

there are few works dealing with the nonconforming methods directly. A general framework of a

posteriori error estimation is presented in [26] for the nonconforming methods, and it is shown

that the methodology of decomposing the errors can be used for problems with arbitrarily high

order.

The error estimators obtained in such ways give upper bounds of the global error, and can

be computed in a posteriori way. However, in local sense, they may provide upper bounds of

error as well as mesh indicators. Xu and Zhou [32] showed a local upper bound for conforming

methods applied to second order problems. Wang and Zhang [31] proved that a local a posteriori

error estimator can be a local upper bound of the error up to higher order terms for the

nonconforming finite element methods to two dimensional biharmonic equations.

In this paper, we study the a posteriori error estimation for nonconforming finite element

methods for the elliptic perturbation problems. A two dimensional linear stationary Cahn-

Hilliard-type equation is used as a model problem. The rest of the paper is organized as

follows. In Section 2, some preliminary materials are provided. In Section 3, global a posteriori

error estimator is obtained for general nonconforming finite element discretization methods on

shape-regular grids for the model problem. The deduction uses the same idea of the framework

[26]. The efficiency of the estimator is devised and analyzed in Section 4. Based upon certain

convergence assumptions, the estimator is optimal in the sense that the a posteriori error

estimator has the same convergence order as that of the a priori error estimator. An h-version

adaptive method is discussed and some numerical experiments are reported in Section 5. In

the final section, further discussions are presented and the local behavior of the estimator is

analyzed.

2. Preliminaries

In this section, we describe the model problem and the corresponding nonconforming finite

element methods.

Let Ω be a bounded domain in R2, with the boundary ∂Ω and ν the unit outer normal

vector to ∂Ω. For nonnegative integer s, we shall use the standard notation Hs(Ω) for Sobolev

space, ‖ · ‖s,Ω the associated norm and | · |s,Ω the associated seminorm. We shall omit s and

not distinguish the norm and the seminorm when s = 0. In addition we denote

H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, H2

0 (Ω) =

{
v ∈ H2(Ω) ∩ H1

0 (Ω) :
∂v

∂ν

∣∣
∂Ω

= 0

}
.


