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Abstract

In this paper, both the standard finite element discretization and a two-scale finite

element discretization for Schrödinger equations are studied. The numerical analysis is

based on the regularity that is also obtained in this paper for the Schrödinger equations.

Very satisfying applications to electronic structure computations are provided, too.
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1. Introduction

This paper is concerned with the finite element approximations to the following Schrödinger

problem: Find (λ, u) ∈ R × H1
0 (Ω) such that

{

−∆u + V u = λu in Ω,

‖u‖0,Ω = 1,
(1.1)

where Ω is a bounded domain in R
3, V = Vne + V0 is the so-called effective potential. Here,

V0 ∈ L∞(Ω) and

Vne(x) = −

Natom
∑

j=1

Zj

|x − rj |
(1.2)

with rj ∈ Ω, Zj some positive constant (j = 1, · · · , Natom), where Natom is the total number

of the atoms in the system.
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It is known that modern electronic structure computations require solving the following

Kohn-Sham equations (see, e.g., [6, 16, 23, 24])



−
1

2
∆ −

Natom
∑

j=1

Zj

|x − rj |
+

∫

R3

ρ(y)

|x − y|
dy + Vxc(ρ)



 ui = λiui in R
3, (1.3)

where Zj is the valance charge of this ion (nucleus plus core electrons), rj is the position of the

j-th atom (j = 1, · · · , Natom),

ρ =

Nocc
∑

i=1

ci|ui|
2 (1.4)

with ui the i-th smallest eigenfunction, ci the number of electrons on the i-th orbit, and Nocc

the total number of the occupied orbits. It is known that such nonlinear Schrödinger equation

(1.3) is a key model in modern physics, materials science and quantum chemistry [6, 23, 24, 32].

The central computation in solving the Kohn-Sham equation is the repeated solution of (1.1)

with some effective potential V that has a singular part as (1.2). Indeed, the original (high

dimensional) Schrödinger equation modeling the behavior of a quantum molecular system is

also of (1.1) and the Kohn-Sham equation is nothing but one of the simplified models of the

original linear high dimensional Schrödinger equation only.

In most applications, a number of eigenpairs are desired and the worst thing is that the

self-consistent iteration is not so easy to converge and it often takes several tens of steps.

Consequently, it is very important to improve the accuracy and reduce the computational cost

in solving (1.1) at each iteration step. More precisely, highly efficient computation of (1.1) is

essential when the simulated system becomes large. Although the finite element method has

been successful in quantum chemistry (see, e.g., [6, 25, 29, 34, 35, 36, 41, 42] and references

therein), to our knowledge, there is no any rigorous finite element analysis for solving (1.1)

in literature. Also, the computation scale in electronic structure computations is still limited

by the large number of basis functions required to adequately describe all-electron solutions

near nuclei, where the solutions can have cusps and oscillate rapidly [6, 25, 35, 36]. Hence it is

significant to design and analyze an efficient finite element scheme for (1.1) when V is singular.

It is noted that a finite element analysis is presented in [41] for the Schrödinger equation of the

S−state of helium atoms based on some variational form in a weighted Sobolev space.

To study a finite element approximation to (1.1) when V has a singular part as (1.2), we need

to investigate the regularity of solution of (1.1). After analyzing the one-scale finite element

discretization (more precisely, the standard finite element discretization), we then consider to

reduce the computational cost and propose a two-scale finite element discretization scheme. For

applications, we will apply the two-scale discretization approach to electronic structure com-

putation. Different from that of [41], our analysis of the one-scale finite element discretization

is set in the standard Sobolev space. It should be mentioned that the two-scale discretiza-

tion scheme for elliptic eigenvalue problems is first proposed in [19] and later developed in

[8, 9, 10, 20, 21, 37, 38], where only problems with smooth coefficients are studied. Our two-

scale discretization work may be viewed as a generalization of that in the literature to the case

of that the coefficient is not smooth. The two-scale approach is an iterative method, which is,

in a way, related to that in [18, 31].

The rest of the paper is organized as follows. In Section 2, some basic notations and the

regularity properties of (1.1) are provided. In Section 3, the standard finite element discretiza-

tion scheme and the two-scale discretization scheme are presented and analyzed. In Section 4,


