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Abstract

The restrictively preconditioned conjugate gradient (RPCG) method is further devel-

oped to solve large sparse system of linear equations of a block two-by-two structure. The

basic idea of this new approach is that we apply the RPCG method to the normal-residual

equation of the block two-by-two linear system and construct each required approximate

matrix by making use of the incomplete orthogonal factorization of the involved matrix

blocks. Numerical experiments show that the new method, called the restrictively precondi-

tioned conjugate gradient on normal residual (RPCGNR), is more robust and effective than

either the known RPCG method or the standard conjugate gradient on normal residual

(CGNR) method when being used for solving the large sparse saddle point problems.
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1. Introduction

Consider an iterative solution of the block two-by-two (BTT) system of linear equations

Ax = b, where A =

[
B E

F C

]
∈ R

n×n and x, b ∈ R
n, (1.1)

with B ∈ R
m×m and C ∈ R

l×l being large, sparse, square and nonsymmetric matrices, E ∈

R
m×l and F ∈ R

l×m being sparse matrices, with m ≥ l, such that A ∈ R
n×n is nonsingular,

where n = m + l. The BTT linear system (1.1) frequently arises in many areas of scientific

computing and engineering applications such as the constrained least-squares problems, the

Navier-Stokes equations in fluid computations, and the Maxwell equations in computational

electromagnetics; see [1, 7, 2] for more details. Obviously, the saddle point problems form a

subset of the BTT linear systems.

When the matrix blocks B is symmetric positive definite, C is symmetric positive semidefi-

nite (e.g., C = 0) and F = ±ET , Bai and Li [4] recently proposed the restrictively preconditioned

conjugate gradient (RPCG) methods for these special forms of the BTT linear system (1.1) and

studied their convergence properties. Numerical results showed that this class of methods are

robust and effective solvers for iteratively computing the solutions of the symmetric positive

definite and the Hamiltonian systems of linear equations. We remark that the RPCG methods
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were also developed to general nonsingular and nonsymmetric linear systems, resulting in a

rather general framework of iterative methods, which not only covers many standard Krylov

subspace methods such as the conjugate gradient [8, 11], the conjugate residual [8, 9], the con-

jugate gradient on normal residual (CGNR) [8, 9, 13] and the conjugate gradient on normal

equation (CGNE) [8, 9, 13], as well as their preconditioned variants, but also yields many new

ones. For details, we refer to [4] and references therein. Latter, Bai and Wang [5] further de-

veloped the RPCG method and obtained an inexact variant for the symmetric positive definite

case of the BTT linear system (1.1), in which both B and C are symmetric positive definite

and F = ET .

In this paper, we use the inexact RPCG method presented in [5] to solve the BTT linear

system (1.1). This new approach first forms the normal-residual equation

Ax ≡ AT Ax = AT b ≡ b, (1.2)

where

A =

[
B E

ET C

]
≡

[
BT B + FT F BT E + FT C

ET B + CT F CT C + ET E

]
(1.3)

is symmetric positive definite, with

B = BT B + FT F, C = CT C + ET E and E = BT E + FT C, (1.4)

and then straightforwardly apply the inexact RPCG method developed in [5] to (1.2)-(1.4), as

now B ∈ R
m×m and C ∈ R

l×l are symmetric positive definite and E ∈ R
m×l is of full column

rank.

For the saddle point problems of the form

Ax = b, where A =

[
B E

ET 0

]
∈ R

n×n and x, b ∈ R
n, (1.5)

with B ∈ R
m×m being a positive definite matrix, E ∈ R

m×l being a matrix of full column

rank and m ≥ l, we give a practical way for constructing approximations to the submatrices B

and S = C − ETB−1E by utilizing the incomplete orthogonal factorization technique in [3]; see

also [12, 6]. The resulting method, called RPCG on normal residual (RPCGNR), is algorith-

mically described in detail. Numerical examples are used to show that the RPCGNR method

outperforms the preconditioned CGNR (PCGNR) method [8] when they are employed to solve

the large sparse saddle point problem (1.5). Moreover, RPCGNR also shows better numerical

behaviour than both RPCG [4] and PCGNR when the matrix block B is symmetric positive

definite and when RPCG is directly applied to the saddle point problem (1.5).

The organization of this paper is as follows. After establishing the RPCGNR method for

solving the BTT linear system (1.1) and its special case (1.5) in Section 2, we present practical

choices for approximating matrix blocks involved in the saddle point problem (1.5) in Section 3.

In Section 4, numerical results are used to show the feasibility and effectiveness of our new

method. Finally, in Section 5, we end this paper with a brief conclusion.

2. The RPCGNR Method

To establish the RPCGNR method for solving the BTT linear system (1.1), according to

[5] we first decompose the block two-by-two matrix A ∈ R
n×n in (1.3) as A = PHQ, where


