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Abstract

In this paper, two fourth-order accurate compact difference schemes are presented for

solving the Helmholtz equation in two space dimensions when the corresponding wave

numbers are large. The main idea is to derive and to study a fourth-order accurate compact

difference scheme whose leading truncation term, namely, the O(h4) term, is independent

of the wave number and the solution of the Helmholtz equation. The convergence property

of the compact schemes are analyzed and the implementation of solving the resulting linear

algebraic system based on a FFT approach is considered. Numerical results are presented,

which support our theoretical predictions.
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1. Introduction

In this paper, we consider two-dimensional Helmholtz equation

∇2u + k2u = f(x, y), (1.1)

where k is wave number, together with some appropriate boundary conditions. Boundary value

problems governed by the Helmholtz equation describe many physical phenomena and have

important applications in acoustic and electromagnetic waves.

When the wave number k is very large, Eq. (1.1) has a great difficulty in computation

because in this case the solutions of Eq. (1.1) are highly oscillatory. There exist many different

numerical methods for solving the Helmholtz equation, such as Galerkin finite element method

[1], spectral method [8,12] and finite difference method [2,4,14]. Many of the proposed schemes

can provide very accurate approximations to the highly oscillatory solutions under the condition

that kh is very small, where h is a characteristic spatial grid size. This condition shows that in

order to attain accurate approximate solutions, it is required to significantly decrease h with

large wave number k.

On the other hand, in recent years, high-order accurate compact finite difference methods

have been used widely for solving convection-diffusion problems, the Navier-Stokes equations

and the Helmholtz equation [3-7,10,11,13,14]. This class of methods is attractive since they

offer a means to obtain high accuracy solutions with less computational costs. In this paper,

we will use the compact finite difference methods to deal with Eq. (1.1). We first derive two

fourth-order compact finite difference schemes for the problem (1.1), and then provide some

convergence analysis for the two methods. The main difference of the two proposed schemes is

* Received January 5, 2007 / Revised version received June 25, 2007 / Accepted July 4, 2007 /



Compact Fourth-Order Finite Difference Schemes for Helmholtz Equation 99

about the coefficient of the leading truncation errors: the coefficient of one of the schemes is

independent of the wave number k and the solution of (1.1) (the solution is in general depends

on k also). Consequently, it is expected that this scheme will be useful for solving Eq. (1.1)

with large wave number k. Moreover, in this work we also apply the fast Fourier transform

(FFT) algorithm to solve the algebraic system resulting from the compact finite difference

discretizations. This significantly speeds up the computational efficiency.

The rest of the paper is organized as follows. In Section 2, two fourth-order compact finite

difference schemes are presented. In Section 3, the convergence analysis of the proposed schemes

for one- and two-dimensional Helmholtz equation is provided. Numerical implementation based

on a FFT approach is given in Section 4. In Section 5, numerical experiments are carried out

to verify the theoretical predictions obtained in this work.

2. Fourth-order Compact Schemes

We consider Eq. (1.1) with Dirichlet and Neumann boundary conditions. For ease of nota-

tions, we only consider a simple square domain Ω = (0, 1)× (0, 1) with ∆x = ∆y, but the main

ideas in this work can be extended to rectangular domains with ∆x 6= ∆y. Divide uniformly

Ω with lines {(xi, yj) : xi = ih, yj = jh, i, j = 0, 1, · · · , J}, where h is the spacial mesh-size.

Use the notation δ2
x, δ2

y to denote the second-order central difference with respect to x, y,

respectively:

δ2
xui,j =

ui−1,j − 2ui,j + ui+1,j

h2
, δ2

yui,j =
ui,j−1 − 2ui,j + ui,j+1

h2
.

By the Taylor series expansion, we get for every sufficiently smooth u

δ2
xu = uxx +

h2

12
ux4 +

h4

360
ux6 + O(h6),

here and below for simplicity, we omit subscripts i, j whenever confusions will not occur. Adding

a similar expression for δ2
y and rearranging the resulting terms give

uxx + uyy = (δ2
x + δ2

y)u − h2

12
(ux4 + uy4) − h4

360
(ux6 + uy6) + O(h6). (2.1)

Similarly, there is the expression

ux2y2 = δ2
xδ2

yu − h2

12
(ux4y2 + ux2y4) + O(h4). (2.2)

Inserting (2.1) into the Helmholtz equation (1.1) gives

(δ2
x + δ2

y)u − h2

12
(ux4 + uy4) − h4

360
(ux6 + uy6) + k2u = f + O(h6). (2.3)

In order to obtain the fourth-order accuracy, we need to approximate the term ux4 + uy4 to

O(h2). By using the original equation (1.1) and the expressions (2.1), (2.2), we have

ux4 + uy4 = ∆2u − 2ux2y2 = ∆(f − k2u) − 2ux2y2 = ∆f − k2(δ2
x + δ2

y)u

−2δ2
xδ2

yu +
k2h2

12
(ux4 + uy4) +

h2

6
(ux2y4 + uy2x4) + O(h4). (2.4)


