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Abstract

In this paper, two new nonconforming hexagonal elements are presented, which are

based on the trilinear function space Q
(3)
1 and are edge-oriented, analogical to the case of

the rotated Q1 quadrilateral element. A priori error estimates are given to show that the

new elements achieve first-order accuracy in the energy norm and second-order accuracy

in the L2 norm. This theoretical result is confirmed by the numerical tests.
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1. Introduction

The finite element method (FEM) is a powerful tool, which can be easily applied to a

large variety of engineering applications. In two dimensions, classical FEMs often treat meshes

consisting of triangles, quadrilaterals, etc. While as is well-known, hexagons also extensively

exist in the nature as well as in some special application fields, such as in material sciences and

nuclear engineering [3, 12, 13]. Moreover, besides triangles and quadrilaterals, only hexagons

can form a regular tessellation of the plane [4], which inspires us to consider hexagonal elements.

Noticing that a bivariate quadratic polynomial has six degree of freedoms, one may ask

whether the six vertices of a hexagon exactly determine a bivariate quadratic polynomial.

Unfortunately, the resulting equation is not unisolvable in general, since the six vertices of the

regular hexagon belong to a same quadratic curve, a circle. To construct conforming hexagonal

elements avoiding polynomial spaces, some works based on rational function spaces have been

carried out in [10, 12, 13, 17]. Moreover, while the nonconforming triangular and quadrilateral

elements are well studied, see, e.g., [7, 11, 14, 15, 16], their hexagonal counterparts are less

complete. This motivates us to study nonconforming hexagonal elements.

The main goal of this paper is to generalize the quadrilateral rotated Q1 element [14] to the

hexagonal case. We use the so-called three-directional coordinates [18] to explore the symmetry

of a hexagon. Two new elements are constructed, both of which are based on trilinear function

space Q
(3)
1 and are edge-oriented. The modified version has an extra degree of freedom on

the element face, which is similar to the five-node element proposed by Han in [11]. Optimal

order error estimates are given with respect to the energy norm and the L2 norm. Numerical

experiments are presented to demonstrate the accuracy of the proposed method.

Before the end of this section, we recall some notations (or refer to [1, 2]). Let (·, ·) denote

the L2 inner product and || · ||Hp(Ω) (resp. | · |Hp(Ω)) be the norm (resp. semi-norm) for the

Sobolev space Hp(Ω).
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2. Nonconforming Hexagonal Element

To begin, we introduce the three-directional coordinates with which the symmetries of a
regular hexagon Ĥ could be well embodied. As is well-known, under Cartesian coordinates, a
plane can be viewed as {(t1, t2, t3) | t3 = 0} in the space. While under the three-directional
coordinates, the plane S = {(t1, t2, t3) | t1 + t2 + t3 = 0} are studied. For more details, we refer
to [18]. Thus any point in the plane S can be represented by a coordinates triple (t1, t2, t3)
with t1 + t2 + t3 = 0. A natural coordinates transform between Cartesian coordinates and
three-directional coordinates can be
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Fig. 2.1. Getting a regular hexagon from a unit-cube.

We let B = {(t1, t2, t3) | − 1 < t1, t2, t3 < 1} be a box domain in the space. Then as

illustrated in Fig. 2.1, the regular hexagon Ĥ can be easily obtained by letting Ĥ = B ∩ S.

Denote the trilinear space over Ĥ as

Q
(3)
1 (Ĥ) = span{1, t1, t2, t3, t2t3, t3t1, t1t2, t1t2t3};

obviously we have dim(Q
(3)
1 (Ĥ)) = 23 − 1 = 7.

We refer symmetric parallel hexagons as an affine-equivalence class of the regular hexagon.

For a symmetric parallel hexagon, any two opposite sides are parallel and the three main

diagonals meet at one symmetric point, see Fig. 2.2.

For simplicity, assume that Ω is a polygon domain and Th be a decomposition of Ω consisted

by symmetric parallel hexagons and triangles, where h = maxK∈Th
diamK. By ∂Th we denote

the set of all edges F of the element K ∈ Th. Assume Th satisfies the usual ”quasi-uniform”

condition [1, 2]. Accordingly, the generic constant C used below is always independent of h. We

take the unit regular hexagon Ĥ and the unit equilateral triangle T̂ as the reference element. For

any K ∈ Th, there exists a unique and invertible affine map FK : K̂ → K, FK = BK x̂+bK := x,

where K̂ could be Ĥ or T̂ .


