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Abstract

In this paper, we consider conductivity inclusions inside a homogeneous background

conductor. We provide a complete asymptotic expansion of the solution of such problems

in terms of small variations in the electrical conductivity of the inclusion. Our method is

based on a boundary integral perturbation theory. Our results are valid for both high and

low contrast inclusions.
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1. Introduction

An interesting problem arising in the study of photonic band gap structures concerns the

calculation of electrostatic properties of systems made by high contrast materials. By high

contrast, we mean that the electrical conductivity ratio is high. When the material contrast is

high, standard numerical procedures can become ill-conditioned. We refer to Tausch, White,

and Wang [10,11] and Greengard and Lee [6] for effective algorithms for this class of problems.

The Tausch-White-Wang approach is based on a perturbation theory while the method of

Greengard and Lee is a modification of the classical integral equation.

In this paper, we derive a complete asymptotic expansion of the solution of the conductivity

problem due to small variations in the conductivity ratio by a boundary integral perturbation

method. We provide error estimates for the approximation. Our results are valid for inclusions

with extreme conductivities (zero or infinite conductivity). In particular, our method may be

viewed as a different approach which can potentially simplify calculations for problems involving

highly conducting inclusions.

Consider a homogeneous conducting object occupying a bounded domain Ω ⊂ R
2, with a

connected Lipschitz boundary ∂Ω. We assume, for the sake of simplicity, that its conductivity is
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equal to 1. Let D with Lipschitz boundary be a conductivity inclusion inside Ω of conductivity

equal to some positive constant k 6= 1. Let uk be the solution of




∇ · (1 + (k − 1)χD)∇uk = 0 in Ω,

∂uk

∂ν

∣∣∣
∂Ω

= g ∈ L2
0(∂Ω),

∫

∂Ω

uk = 0,
(1.1)

where χD is the indicator function of D. We allow k to be 0 or +∞. If k = 0, the inclusion D

is insulated, and the equation in (1.1) is replaced with





∆u0 = 0 in Ω \D,

∂u0

∂ν

∣∣∣
∂D

= 0,
∂u0

∂ν

∣∣∣
∂Ω

= g,

∫

∂Ω

u0 = 0,

and if k = +∞, then D is a perfect conductor and the equation in (1.1) is replaced with




∆u∞ = 0 in Ω \D,

∇u∞ = 0 in D,

∂u∞
∂ν

∣∣∣
∂Ω

= g,

∫

∂Ω

u∞ = 0.

(1.2)

It was proved in [4, 7] that uk converges in W 1,2(Ω \ D) to u0 or u∞ as k → 0 or k → +∞.

Here the space W 1,2(Ω \D) is the set of functions f ∈ L2(Ω \D) such that ∇f ∈ L2(Ω \D).

The main result of this paper is a rigorous derivation, based on layer potential techniques, of a

complete asymptotic expansion of uk|∂Ω as k → +∞ or 0. In fact we will derive an asymptotic

formula of uk|∂Ω when k → k0.

This paper is organized as follows. In the next section we give an explicit asymptotic formula

of uk as k → +∞ or 0 when Ω is a disk and D is a concentric disk. In Section 3, we derive a

complete asymptotic formula for uk − uk0
on ∂Ω when k → k0. The formula is valid even when

k0 = 0 or +∞.

2. Explicit Formula

In this section, Ω is assumed to be the unit disk centered at the origin, and D to be the

concentric disk centered at the origin with radius α. Set

g(1, θ) =
∑

n∈Z\{0}

gne
inθ.

Write

uk =






a0 + b0 ln(r) +
∑

n∈Z\{0}

(anr
|n| + bnr

−|n|)einθ in Ω \D,

∑

n∈Z

cn
α|n|

r|n|einθ in D,

where the Fourier coefficients an, bn and cn are to be found.

Since g ∈ L2
0(∂Ω) and

∫
∂Ω
uk = 0, we have that a0 = b0 = 0. Using the continuity of uk

across the interface ∂D, we get c0 = 0. Then, for n ∈ Z \ {0}, we have





|n|an − |n|bn = gn,

anα
|n| + bnα

−|n| − cn = 0,

anα
|n| − bnα

−|n| − kcn = 0,


