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Abstract

In this paper, some V-cycle multigrid algorithms are presented for the coupling system
arising from the discretization of the Dirichlet exterior problem by coupling the natural
boundary element method and finite element method. The convergence of these multigrid
algorithms is obtained even with only one smoothing on all levels. The rate of convergence
is found uniformly bounded independent of the number of levels and the mesh sizes of all
levels, which indicates that these multigrid algorithms are optimal. Some numerical results
are also reported.
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1. Introduction

In many fields of scientific and engineering computing, it is necessary to solve boundary
values problems of partial differential equations over unbounded domains. The standard tech-
niques such as the finite element method, which is effective for problems in bounded domain,
may meet some difficulties for unbounded domain problems and in particular the corresponding
computing cost may be very high. So for problems of this kind, it is a good choice to use the
method that combines the boundary element method and finite element method. This treat-
ment enables us to combine the advantages of boundary element method for treating domains
extended to infinity with those of finite element method in treating the complicated bounded
domain problems. Research in this direction is of great importance in both theory and practical
computation.

The procedure of this kind of coupling can be briefly described as follows. The unbounded
domain is divided into two subregions, i.e., a bounded inner one and an unbounded outer one,
by introducing an artificial common boundary. Then, the problem is reduced to an equivalent
one in the bounded region. There are many approaches to accomplish this reduction (refer
to [6, 7, 8, 10, 11, 12, 14, 15, 17, 19, 20, 24, 26] and references therein). Natural boundary
reduction method is one of them.
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Natural boundary reduction method and its coupling with finite element method, which is
also known as the exact artificial boundary condition method, were suggested and developed
first by Feng in 1980, Yu in 1982 and Han in 1985. And a very similar method, the so-called
DtN method, was devised by Keller and Givoli in 1989. In this reduction, the problem over
unbounded exterior domain is reduced to an bounded problem with a hyper-singular integral
equation on the artificial boundary by using a Green function to get the exact artificial boundary
condition with hyper-singular integrals. It is fully compatible with the variational principle over
the domain, and the boundary elements are also fully compatible with the domain elements.
This coupling is natural and direct. Moreover, the coupled bilinear form preserves automatically
the symmetry and coerciveness of the original bilinear form. As a result, the analysis of the
discrete problem is simplified, and also the error estimates and the numerical stability are
restored (see [11, 23, 24]). In this paper, we follow this approach.

With a discretization scheme, the construction of efficient algorithms for solving the resulting
discrete system is of great importance. So, our goal is to construct efficient algorithms for the
discrete system obtained from the coupling of natural boundary element method and finite
element method.

It is well known that multigrid algorithms are among the most efficient methods for solving
discretization equations arising from various finite element approximations of boundary value
problem on bounded domain (for multigrid method, refer to [1, 2, 3, 4, 13, 21] and references
therein). During the last three decades, there has been intensive research toward multigrid
methods. The purpose of this paper is to construct multigrid algorithms for discretization
equations arising from the coupling of the natural boundary element method and finite element
method for the Dirichlet exterior problem and to investigate their convergence.

In the following sections, some V-cycle multigrid algorithms are constructed. We will in-
vestigate the convergence of these multigrid algorithms even with only one smoothing on all
levels. The rate of convergence is shown to be uniformly bounded independent of the number
of levels and the mesh sizes of all levels, which indicates that the proposed multigrid algorithms
are optimal.

The remainder of this paper is organized as follows: In section 2, we present our model prob-
lem and introduce the natural boundary reduction method. Multigrid algorithm is described
and analyzed in section 3. And some numerical results are reported in section 4.

2. Model Problem and Natural Boundary Reduction

We adopt the standard notations for Sobolev space, with their norms and semi-norms as
presented in [5, 9]. Let Ω be a Lipschitz bounded domain in R

2, Ωc = R
2 \(Ω∪∂Ω), f ∈ L2(Ωc)

be a given compactly supported function. We consider the following model problem{
−�u = f, in Ωc,

u = 0, on ∂Ω, (2.1)

subject to the asymptotic conditions

u(x, y) = α+O(1/r), |∇u(x, y)| = O(1/r2),

as r =
√
x2 + y2 → ∞ where α is a constant. Define

H1
�(Ωc) = {v| v√

r2 + 1 ln(r2 + 2)
,
∂v

∂x
,
∂v

∂y
∈ L2(Ωc) , v|∂Ω = 0}

and

a(w, v) =
∫ ∫

Ωc

∇w · ∇vdxdy , ∀w, v ∈ H1
�(Ωc) .


