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Abstract

This paper is devoted to the five parameters nonconforming finite element schemes with
moving grids for velocity-pressure mixed formulations of the nonstationary Stokes prob-
lem in 2-D. We show that this element has anisotropic behavior and derive anisotropic
error estimations in some certain norms of the velocity and the pressure based on some
novel techniques. Especially through careful analysis we get an interesting result on con-
sistency error estimation, which has never been seen for mixed finite element methods in
the previously literatures.
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1. Introduction

We usually apply the finite element methods to the spatial domain, but choose difference
methods with respect to the time variable for solving partial differential equations depending
on time. At the same time, different meshes of domain are used at different time level. As
we all know, the solutions may have weak regularity at the beginning, therefore, lower order
interpolation functions and the smaller meshes should be used. As the time goes on, the
regularity of the solution becomes better, the higher order interpolation functions and the
larger meshes can be used. That is the main idea of the finite element with moving grids.

Local interpolation error estimations for the finite element methods with moving grids are
developed in the literatures [2,3]. But these results are based on isotropic meshes at any time
and on any domain. In fact, many examples show that the solutions sometimes have anisotropic
behaviors [1,6] on boundary or interior layers. That means that the solution varies significiently
only in certain directions. In such cases it is an obvious idea to reflect this anisotropy in the
discretization by using anisotropic meshes with a small size in the direction of the rapid variation
of the solution and a larger mesh size in the perpendicular direction. That is, anisotropic meshes
are necessarily used.

Recently, there have appeared some studies on anisotropic meshes [1,8,14,15,16,18,19], but
most of all only considered the interpolation error estimation and conforming elements for ellip-
tic boundary problems. The nonconforming elements and Stokes problem on anisotropic meshes
are hardly treated, [9] studied the anisotropic error of Crouzeix-Raviart type elements and ap-
plied them to possion problem, [6] studied the quasi-wilson element under a new framework.
However, as to anisotropic meshes with moving grids there have been no articles published on
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this respect. Because of the restrictions of the BB conditions, nonconforming finite elements are
particularly interested in mixed methods for problems like the velocity-pressure type of Stokes
equations, which are advanced in simply structure, economic computing and matching of error
orders. The well-known examples include nonconforming Crouzeix-Raviart element [13], the ro-
tated Q1 element [4] and so on, but these elements can only be used to deal with Stokes equations
with moving grids under the regular assumption [10]. [5] developed a kind of nonconforming
rectangular element and gave the error estimation for stationary Stokes equations on isotropic
meshes. In this paper, we will first show that the element in [5] has anisotropic behavior , and
then we derive the error estimation of the stationary Stokes equations on anisotropic meshes.
Furthermore, with the idea of moving grids, we study the nonstationary Stokes equations and
address the anisotropic nonconforming error estimations based on some results of the stationary
problem and some novel approaches. At the same time, by careful analysis we will prove a very
interesting and more important result, that is , when the solution (u, p) ∈ (H2(Ω))2 × H1(Ω)
the consistency error is of order O(h2), one order higher than that of interpolation error which
is similar to the reports of [11] for the triangular quasi-conforming and generalized conforming
finite elements of fourth order plate bending problem, and the double set 12-parameter rec-
tangular element obtained in [12], and that of [16] for the quasi-wilson element for the second
order problems.

Throughout the paper we use the following concerning indices. For the sake of simplity,
let Ω ⊂ R2 be a rectangular domain with boundary ∂Ω parallel to x-axis or y-axis. Let Γh

be a family of rectangular subdivisions, i.e., Ω =
⋃

K∈Γh

K. Denote by hK the diameter of the

finite element K, and by ρK the supremum of the diameters of all balls contained in K. Then
the regularity assumption in the classical finite element theory is hK

ρK
≤ C, ∀K ∈ Γh (The

C is a positive constant independent of Γh and of the function under consideration). This
assumption is no longer valid in the case of anisotropic meshes. Conversely, anisotropic element
K is characterized by hK

ρK
−→ ∞ where the limit can be considered as h −→ 0, h = max

K
hK .

In this paper the C will also denote the positive constant, not necessarily the same at different
occurances which is independent of hK

ρK
and h. For the general element K, we denote the lenghths

of sides parallel to x-axis and y-axis by 2hx and 2hy respectively, and the central point of K

by (xK , yK). Let K̂ be a reference element(see Fig.1.), and K̂ = [−1, 1]× [−1, 1] with vertices

d̂1 = (−1,−1), d̂2 = (1,−1), d̂3 = (1, 1), d̂4 = (−1, 1). Let l̂1 = d̂1d̂2, l̂2 = d̂2d̂3, l̂3 = d̂3d̂4, l̂4 =

d̂4d̂1 be the four sides of K̂. The transformation of FK : K̂ −→ K is defined by

{
x = xK + hxξ,

y = yK + hyη.
(1.1)

d̂1(−1,−1) d̂2(1,−1)
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Fig.1. the reference element K̂


