
Journal of Computational Mathematics, Vol.24, No.4, 2006, 527–538.

A PROJECTION-TYPE METHOD FOR SOLVING VARIOUS

WEBER PROBLEMS ∗1)

Jian-lin Jiang Bo Chen
(Department of Mathematics, Nanjing University, Nanjing 210093, China)

Abstract

This paper investigates various Weber problems including unconstrained Weber prob-
lems and constrained Weber problems under l1, l2 and l∞-norms. First with a trans-
formation technique various Weber problems are turned into a class of monotone linear
variational inequalities. By exploiting the favorable structure of these variational inequal-
ities, we present a new projection-type method for them. Compared with some other
projection-type methods which can solve monotone linear variational inequality, this new
projection-type method is simple in numerical implementations and more efficient for solv-
ing this class of problems; Compared with some popular methods for solving unconstrained
Weber problem and constrained Weber problem, a singularity would not happen in this
new method and it is more reliable by using this new method to solve various Weber
problems.
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1. Introduction

Weber problem (WP) is one of the fundamental models in location theory and has many
applications in practice, see, e.g., [10]. Its objective is to site a new facility in the plane
to minimize a sum of weighted distances from the new facility to a set of customers whose
locations are known. Weber problem has the following formulation:

WP: min
x∈R2

C(x) =
n

∑

j=1

wj‖x − aj‖p, (1.1)

where ai is the known location of the ith customer, i = 1, · · · , n; n is the number of customers;
x is the unknown location of the new facility; wi is the weight associated with the customer
ai, i = 1, · · · , n; ‖ · ‖p is the distance measuring function.

When the new facility x is restricted to be sited in a constrained area X , this model is
named as constrained Weber problem (CWP).

Some efficient methods have been proposed for solving Weber problem and constrained
Weber problem. Weiszfeld procedure [12] is perhaps the most popular and standard method for
Weber problem with Euclidean distances; Recently, a so-called Newton-Bracketing (NB) method
[8] was presented to solve Weber problem. The well-known method for constrained Weber
problem whose constrained area is the union of a finite set of convex polygons was presented
in [3], which consists in a search for the unconstrained solution followed by an exploration of
some of the boundary parts of the polygons defining the feasible region.
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However, a singularity may happen for these popular methods: if an iterate generated by
them is identical with one of customers, the next iterate is undefined. The reason for this
singularity is that a “bad” initial point is chosen for these methods. Chandrasekaran and
Tamir [2] showed that the set of these “bad” initial points may contain a continuum set, and
thus in advance we have no way to clearly know whether one initial point is bad or not.

In this paper, we discuss various Weber problems (VWP) including Weber problems and
constrained Weber problems under l1, l2 and l∞-norms,

VWP: min
x∈X

C(x) =

n
∑

j=1

wj‖x − aj‖p, (1.2)

where X is a constrained area which is closed and convex in R2. Note that VWP reduce to
Weber problem in the case that X = R2. With a transformation technique, various Weber
problems can be reformulated as min-max problems from which a class of monotone linear
variational inequalities (LVIs) may be obtained,

{

(x − x∗)T (AT z∗ + q1) ≥ 0 ∀ x ∈ X,

(z − z∗)T (−Ax∗ + q2) ≥ 0 ∀ z ∈ Z,
(1.3)

where x ∈ Rk, z ∈ Rkn, A = (Ik, · · · , Ik)T ∈ Rkn×k, Ik is the k × k identity matrix and X and
Z are closed convex sets. Thus, solving various Weber problems is equivalent to solving (1.3).

Many computational methods have been established for solving monotone linear variational
inequality. The projection-type methods, e.g., projection-contraction (PC) methods, may be
one class of the simplest methods for solving these problems and they are also applicable for
solving (1.3). Our purpose is to exploit the favorable structure of (1.3) in practice and propose
a more efficient projection-type method for it. Note that for LVI (1.3) AT A = nIk. Based on
this observation, a new projection-type method is proposed. The new method is rather simple
in numerical implementations. The most significance for proposing this new method is that
for an arbitrarily chosen initial point the singularity would not happen for this new method,
which guarantees that using this method we can acquire the optimal solution of various Weber
problems. Numerical results are reported, which shows that the new projection-type method
is meaningful for solving these problems.

The paper is organized as follows. Some popular methods for solving Weber problem are
provided in Section 2. In Section 3 various Weber problems under l1, l2 and l∞-norms are
transformed into this class of variational inequalities (1.3). Some preliminaries required in
coming analysis are given in Section 4. The new projection-type method for solving this class
of variational inequalities is presented in Section 5. In Section 6 the convergence of the new
method is provided and preliminary numerical results are reported in Section 7. Finally, some
concluding remarks are drawn in the last section.

2. Some Existing Algorithms for Solving Weber Problem

In this section we discuss two popular methods for solving Weber problem: Weiszfeld pro-
cedure and Newton-Bracketing method.

2.1 Weiszfeld procedure

Since the distance measuring function is convex, as a sum of convex functions, the objective
function C(x) of Weber problem is convex. It is clear that the set of its optimal solutions is
nonempty and convex. Whereas, the main difficulty for solving Weber problem is that C(x)
is non-differentiable at some locations, e.g., the locations of customers. The gradient of C(x)


