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Abstract

Four primal discontinuous Galerkin methods are applied to solve reactive transport
problems, namely, Oden-Babuška-Baumann DG (OBB-DG), non-symmetric interior penalty
Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG), and incomplete interior
penalty Galerkin (IIPG). A unified a posteriori residual-type error estimation is derived
explicitly for these methods. From the computed solution and given data, explicit esti-
mators can be computed efficiently and directly, which can be used as error indicators for
adaptation. Unlike in the reference [10], we obtain the error estimators in L2(L2) norm by
using duality techniques instead of in L2(H1) norm.

Mathematics subject classification: 65L10, 65L12.
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1. Introduction

Numerical modeling of reactive transport problems in porous media is widely used in many
fields, such as petroleum engineering, groundwater hydrology, environmental engineering, soil
mechanics, earth sciences, chemical engineering and biomedical engineering. But, real sim-
ulations for simultaneous transport and chemical reaction present significant computational
challenges [1, 2].

The discontinuous Galerkin (DG) method was initially introduced by Reed and Hill in 1973
as a technique to solve neutron transport problems. Recently, the discontinuous Galerkin meth-
ods (DG) [3, 4, 5] have been popular for solving a wide variety of problems. DG has a lot of
advantages over traditional finite element methods. Firstly, it is flexible which allows for gen-
eral non-conforming meshes with variable degrees of approximation. secondly, it is locally mass
conservative and the average of the trace of the fluxes along an element edge is continuous.
Thirdly, it has less numerical diffusion and can deal with rough coefficient problems. Finally, it
is easier for h-p adaptivity. DG applications for flow and transport problems in porous media
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have been studied in [6, 7].
A posteriori error estimators do not involve the knowledge of the exact unknown solution

and are computable. At the same time, a posteriori error estimators are useful for adaptivity
because they signify where refinement in spatial quantities or polynomial degree may be adap-
tively modified.

A posteriori error estimators for DG methods have mainly focused on steady-state equations
of elliptic and hyperbolic type [8, 9]. And there are very few papers that deal with a poste-
riori error estimation for DG methods applied to transient problems. Explicitly, a posteriori
error estimates in the L2(H1) norm have been derived for four primal DG methods applied to
reactive transport problems [10] without dual assumptions. Sun and Wheeler [11] derived an
explicit L2(L2) estimates for a symmetric discretization of the diffusion operator using a duality
argument. In [12], L2(L2) estimates of a non-symmetric interior penalty formulation and the
related local discontinuous Galerkin formulation are explored. We remark that error indicators
in the L2(L2) norm are preferred over the indicators in L2(H1) for problems concerning the
concentration itself rather than the transport flux. In this paper, we will establish a unified
a posteriori error estimation for four primal DG methods (i.e. OBB-DG, NIPG, SIPG, and
IIPG) using duality techniques.

We consider a model reactive transport problem in a porous media

φ∂tc + ∇ · (uc − D∇c) = φf in Ω, t ∈ (0, T ], (1.1)

(uc − D∇c) · n = (ug) · n on Γin, t ∈ (0, T ], (1.2)

(−D∇c) · n = 0 on Γout, t ∈ (0, T ], (1.3)

c(x, 0) = c0(x) in Ω. (1.4)

where Ω is a polygonal and bounded domain in Rd (d = 1, 2 or 3) with boundary ∂Ω = Γin ∪
Γout, Γin = {x ∈ ∂Ω : u · n < 0} and Γout = {x ∈ ∂Ω : u · n ≥ 0} are the inflow boundary and
the outflow boundary, n denotes the unit outward normal vector to ∂Ω; u(x, t) represents the
Darcy velocity and we assume that u is given and satisfies ∇·u = 0; c(x, t) is the concentration
of some chemical component, φ(x) is the effective porosity of the medium and is bounded
above and below by positive constants, D(x,u, t) denotes a diffusion or dispersion tensor and
is uniformly positive definite, and f(x, t) is a source term.

The paper is organized as follows. In section 2, we introduce the DG schemes. In section 3,
a posteriori error estimators in L2(L2) norm for the semi-discrete schemes are obtained using
duality techniques explicitly. The numerical experiments are listed in section 4.

2. Discontinuous Galerkin Method

2.1. Notation

Let εh be a family of non-degenerate (or called regularity, which means that the element
is convex and that there exists λ > 0 such that if hj is the diameter of Ej ∈ εh, then each of
the sub-triangles (for d = 2) or sub-tetrahedra (for d = 3 ) of element Ej contains a ball of
radius λhj in its interior), and possibly non-conforming finite element partitions of Ω composed
of triangles or quadrilaterals if d = 2 , or tetrahedra, prisms or hexahedra if d = 3.

Let Γh be the set of all interior edges (for 2 dimensional domain) or faces (for 3 dimensional
domain) for εh. Γh,in and Γh,out denote the set of all edges or faces on Γin and Γout for εh,
respectively. nγ is the outward unit normal vector on each edge or face γ ∈ Γh ∪Γh,in ∪Γh,out.

The inner product in (L2(Ω))d or L2(Ω) is indicated by (·, ·)Ω and the inner product in the
boundary function space L2(γ) is indicated by (·, ·)γ .

For s ≥ 0, we define

Hs(εh) = {v ∈ L2(Ω) : v|E ∈ Hs(E), E ∈ εh}. (2.1)


