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Abstract

We review some of our recent efforts in developing upscaling methods for simulating
the flow transport through heterogeneous porous media. In particular, the steady flow
transport through highly heterogeneous porous media driven by extraction wells and the
flow transport through unsaturated porous media will be considered.
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1. Introduction

The central difficulty in the modeling of subsurface flow and transport is the accounting for
the spatial variability in the parameters used to characterize the relevant physical properties
of the natural porous media. In realistic situations, the precise spatial distribution of the
parameters required to characterize the problem is never available due to the lack of enough
data. Thus sophisticated geological and geostatistical modeling tools are used in practice to
generate highly detailed medium parameters based on some site-specific measurements and
experience from other sites. There exists a vast literature on the upscaling or homogenization
techniques that lump the small-scale details of the medium into a few representative macroscopic
parameters on a coarse scale which preserve the large-scale behavior of the medium and are
more appropriate for reservoir simulations. We refer to the book of Christakos [7] for more
information on the random field modeling of the natural porous medium parameters and the
recent review paper [24] on the existent upscaling techniques in the engineering literature.

The recently introduced multiscale finite element method [15, 16] for solving elliptic equa-
tions with oscillating coefficients provides an effective way to capture the large scale structures
of the solutions on a coarse mesh without resolving all the fine scale structures. The central
idea of the method is to incorporate the local small scale information of the leading order differ-
ential operator into the finite element bases. It is through these multiscale bases and the finite
element formulation that the effect of small scales on the large scales is correctly captured. We
also refer to the related analysis of the heterogeneous multiscale method (HMM) [19] for solving
the elliptic problem with oscillating coefficients. In section 2 we will describe one engineering
upscaling technique and discuss its relation with the multiscale finite element method.

The study of steady flow through highly heterogeneous porous medium driven by extraction
wells is of great importance in hydrology, petroleum reservoir engineering. It is observed in the
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engineering literature (cf. e.g. [8] and [21] and the references therein) that in the near-well
region, many of the existing upscaling methods do not provide satisfactory results. The reason
may be explained as the standard upscaling methods generally assume the pressure field is
slowly varying, that is clearly not true in the vicinity of the flowing wells [8]. This fact may
also be explained mathematically from the homogenization theory for the second order elliptic
equations with periodic coefficients. In the homogenization theory, multiscale convergence is
ensured under the assumption that the source should be at least in H−1 so that the solution is
bounded in Sobolev space H1. As we will see below, however, well singularities can be modeled
as Dirac sources and thus in the near-well region, the solution behaves like Green function
which is not uniformly bounded in H1. In section 3 we will describe an upscaling technique for
dealing with well singularities.

The nonlinear Richards equation which models the flow transport in unsaturated porous me-
dia is of significant importance in engineering applications. We consider the following nonlinear
partial differential equations

∂θ

∂t
−
∂K

∂x3

−∇ · (K∇u) = f,

where θ is volumetric water content, K is the absolute permeability tensor, u is the fluid pres-
sure, x3 denotes the vertical coordinate in the medium, and f stands for possible sources/sinks.
The sources of nonlinearity of Richards equation come from the moisture retention function
θ(u) and relative hydraulic conductivity function K(θ), respectively. Based on experimental
results, many different functional relations have been proposed in the literature through various
combinations of the dependent variables θ, u and K, and a certain number of fitting parameters
(e.g., [13, 14]). There are several widely known formulations of the constitutive relations such as
the van Genuchten-Mualem model [14], or the Garder model [13]. For example, in the Garder
model, also called exponential model,

θ(u) = θr + (θs − θr)e
−β|u|, K(u) = Kse

−α|u|,

where θr and θs represent the residual water content and saturated water content respectively,
Ks is the saturated hydraulic conductivity, and α, β are parameters of the porous media. In
section 4 we develop an upscaling method for a class of nonlinear parabolic equations which
includes the Richards equation in the parabolic range as a special case.

2. Upscaling of the Permeability

The purpose of this section is to show that one of the well-known engineering upscaling
techniques (see e.g. [20]) is equivalent to the multiscale finite element method proposed in
[10, 15]. We remark that multiscale finite element method is shown to be convergent under the
condition that the permeability is locally periodic Kε(x) = K(x, x/ε), where K(x, ·) is periodic
with respect to the second variable. As a consequence, the convergence of the engineering
approach described in this section is guaranteed.

Let MH be a finite element mesh of Ω with the mesh size H much larger than the ε, the
characteristic length representing the small scale variability of the media. Usually, ε is equal
to the correlation length in the statistical random field modeling of the media. Let WH be
the standard conforming linear finite element space over MH and W 0

H = WH ∩H1
0 (Ω). In the

engineering literature, the problem

−div (Kε(x)∇uε) = f in Ω, uε = 0 on Γ (2.1)

is approximated by the homogenized or upscaled problem: Find u∗H ∈ W 0

H such that
∫

Ω

K∗(x)∇u∗H∇vHdx =

∫

Ω

fvHdx ∀vH ∈W 0

H (2.2)

with K∗ being piecewise constant on the coarse mesh MH . The so-called effective permeability
matrix K∗ on each T ∈ MH is defined as follows. For any G ∈ R2, let θε be the solution of
the problem

−div (Kε∇θε) = 0 in T, θε|∂T = G · x.


