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Abstract

This paper provides a proof for the uniform convergence rate (independently of the

number of mesh levels) for the nonnested V-cycle multigrid method for nonsymmetric and

indefinite second-order elliptic problems.
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1. Introduction

In this paper we study the convergence of the nonnested V-cycle multigrid method, cf.

[2,3]. The nonnestedness is usually caused either by the nature of a specific element (e.g.,

nonconforming finite elements) or by the nonnested mesh refinement. Due to the varieties of

the elements and the triangulations for various problems, nonnestedness is universal, cf. [2],

[5], [3].

It is well-known that a general proof of the uniform convergence of the nonnested V-cycle

multigrid method had been open for many years, although there have been numerous numerical

experiments showing that a uniform convergence rate does exist, see [7], [14], [5], [18], [9]

and references cited. Among others, the analysis of the V-cycle for the non-conforming finite

element method for the second-order elliptic problem has been and is still an active research

subject. Let us mention some works in this aspect. The authors of [14][21] proposed a so-

called Galerkin V-cycle nested multigrid method and obtained a uniform convergence rate.

Since the iterated intergrid transfer operator is employed and different discrete equations on

different levels are solved, when dealing with anisotropic problems, the computational work is

huge for this Galerkin V-cycle. Recently, the author of [23] gave a proof under a less regularity

requirement for the nonconforming V-cycle of the symmetric and positive definite second-order

elliptic problem. Nevertheless, it is not clear if the analysis therein could be carried over to

other cases where the nonnestedness may be caused by bubble functions (the bubbles are either

artificial or come from cubic and above finite elements) or by unstructured mesh refinements,

due to its lengthy analysis and its long list of assumptions. Other related works may be referred

to [8], [5], [9], [2], [24], [25], [27], [28], [29], [26]. More importantly, however, up to now there

is no a general convergence proof for the nonnested V-cycle for nonsymmetric and indefinite

second-order elliptic problems.
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In this paper, inspired by an argument developed in [4], we give a general convergence proof

for the nonnested V-cycle for nonsymmetric and indefinite second-order elliptic problems. Our

proof covers all existing nonnested V-cycle where Assumptions A1) and A2) hold (see Section 3

of this paper), including the non-conforming V-cycle with nested meshes [6,10,15], conforming

V-cycle with nonnested meshes [9] and Mortar element V-cycle [26, 29, 28, 20]. We obtain a

uniform convergence rate (independently of the number of mesh levels), under the condition that

the number of pre and post-smoothing steps are sufficiently large and that the coarsest mesh-

size is sufficiently small (see Theorem 3.1 and Remark 3.1 of this paper). We point out that, for

all existing nonnested V-cycle methods, Assumptions A1) and A2) are valid, see the comments

on various nonnested V-cycles in Remark 3.2 of this paper. The key Assumption A1) is the

usual regularity-approximation property as in [4,2,3,1], whose verification here requires the full

elliptic regularity assumption. The Assumption A2) concerns the approximation property of

the coarse-to-fine intergrid transfer operator, which is usually either the interpolation or the

L2 projection operator. Also, the assumption A2) holds for all existing nonnested V-cycles, see

Remark 3.2 of this paper. We would like also to remark that it is not clear if our approach

could be applied to the case of less elliptic regularity, see related works [27] for nonconforming

W-cycle and [23] for nonconforming V-cycle for symmetric and positive definite second-order

elliptic problems.

The outline of this paper is as follows. In section 2, we review the nonsymmetric and

indefinite second-order elliptic problem and the V-cycle multigrid method as well as some

notations. In section 3, we obtain the convergence rate for the nonnested V-cycle multigrid

method for nonsymmetric and indefinite second-order elliptic problems.

2. Preliminaries

2.1. Nonsymmetric and indefinite second-order elliptic problem

Let Ω be a bounded, connected domain in R
n, (n = 2, 3), with Lipschitz continuous bound-

ary ∂Ω. We will use Sobolev spaces Hk(Ω), with norm || · ||Hk(Ω) and seminorm | · |Hk(Ω), and

H1
0 (Ω) = {v ∈ H1(Ω); v|∂Ω = 0}. We denote by (·, ·) the inner product of L2(Ω)(≡ H0(Ω)) or

(L2(Ω))n.

We consider the nonsymmetric and indefinite second-order elliptic problem:

−
n

∑

i,j=1

∂

∂xj

(

aij(x)
∂u

∂xi

)

+

n
∑

i=1

bi(x)
∂u

∂xi
+ d(x)u = f, in Ω, u|∂Ω

= 0, (2.1)

where A(x) := (aij(x)) ∈ R
n×n is bounded symmetric and uniformly positive definite in the

usual sense, and aij , bi ∈ C1(Ω̄) and d ∈ C0(Ω̄). The variational problem of (2.1) reads as

follows: Find u ∈ U := H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ U, (2.2)

where

a(u, v) := ã(u, v) + b(u, v), (2.3)

ã(u, v) := (A▽u,▽v) + (u, v), (2.4)

b(u, v) := (b · ▽u, v) + ((d− 1)u, v), (2.5)

with b := (b1, · · · , bn)T and ▽u = (∂u/∂x1, · · · , ∂u/∂xn)T .


