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Abstract

The main aim of this paper is to study the superconvergence accuracy analysis of the
famous ACM’s nonconforming finite element for biharmonic equation under anisotropic
meshes. By using some novel approaches and techniques, the optimal anisotropic inter-
polation error and consistency error estimates are obtained. The global error is of order
O(h2). Lastly, some numerical tests are presented to verify the theoretical analysis.
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1. Introduction

There are a lot of studies on the famous ACM’s nonconforming finite element (refer to
[6,8,12]). It is well-known that ACM’s element is often employed as solving biharmonic equation.
But all the results obtained previously are based on usual admissibility conditions of meshes
Jh , in which regular assumption [6](or quasi-uniform assumption or inverse assumption) plays
a very important role in the error estimates. That is, denoted by hK , h the diameter of the
finite element K ∈ Jh and max

K∈Jh

hK , and by ρK the superior diameter of all circles contained in

K respectively, then it is assumed in the classical finite element theory that hK

ρK
≤ C, h

hK
≤ C.

Here and later in this paper, C denotes a general positive constant which is independent of hK

ρK

and the function under consideration. However, such assumption is no longer valid in the case
of anisotropic meshes. Conversely, anisotropic elements K are characterized by hK

ρK
→ ∞,where

the limit can be considered as h → 0. Recently, Zenisek[13,14] and Apel [1,2] published a series
of papers concentrating on the interpolation error estimates of some Lagrange type elements
(conforming elements), but nonconforming methods are hardly treated. As far as we know, it
seems that there are few studies on the nonconforming elements on anisotropic meshes and the
application to the fourth order equation is still an open problem.

On the other hand, the superconvergence study of the finite element methods is one of the
most active research subjects both in theoretical analysis and in practical computations. Many
superconvergence results about conforming finite element methods have been obtained (see
[3,7,9,16]). Do the superconvergence results of conforming elements still hold for those noncon-
forming ones? [4,11,15] studied the superconvergence results of Wilson element, and obtained
the superconvergence estimates of the gradient error at the centers , nodes and midpoints of
edges of the elements. [10] obtained the same superconvergentce results of rotated Q1 element
under square meshes.

Besides the conventional error order of ACM’s element for the fourth order problem is of
O(h)[6,8], [9] and [12] obtained the optimal error estimate of ACM’s element for biharmonic
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equation with uniform rectangular meshes and rectangular meshes respectively. Furthermore,
[9] also get the superclose result of ACM’s element for biharmonic equation.

In this paper, we will consider the superconvergence of ACM’s element for the biharmonic
equation on anisotropic meshes. The interpolation error estimate can be regarded as an ap-
plication of the anisotropic finite element theory proposed by the same authors in [5], and the
consistency error estimate is a generation to anisotropic mesh of the result of [8,9]. The results
obtained herein are helpful in developing a posterior error estimates for the ACM’s element and
then designing some adaptive algorithm for numerical solution for biharmonic equations.

2. The Anisotropic Interpolation Property of ACM’s Element

Let Ω be a domain of tensor product type,which means that the domain is the union of
rectangles with sides parallel to the coordinate axes. Let Jh be a rectangular subdivision of
Ω without the restrictions of regular assumption and inverse assumption. Let K ∈ Γh be a
rectangle , with the central point (xK , yK), 2hx and 2hy the length of sides parallel to x axis
and y axis respectively, a1(xK − hx, yK − hy), a2(xK + hx, yK − hy), a3(xK + hx, yK + hy) and

a4(xK −hx, yK +hy) the four vertices. Let K̂ be a reference element in ξ−η plane with central

point (0,0), and four vertices a1(−1,−1), a2(1,−1), a3(1, 1) and a4(−1, 1). Let l̂1 =
−−→
â1â2, l̂2 =−−→

â2â3, l̂3 =
−−→
â3â4 and l̂4 =

−−→
â4â1. Then there exists an affine mapping FK : K̂ −→ K:

{

x = hxξ + xK ,
y = hyη + yK .

We define the finite element (K̂, P̂ , Σ̂) on K̂ as follows:

P̂ = P3(K̂)
⋃

{ξ3η, ξη3}, Σ̂ = {v̂1, v̂1ξ, v̂1η, · · ·, v̂4, v̂4ξ, v̂4η} (1)

where v̂iξ = ∂v
∂ξ

(âi), v̂iη = ∂v
∂η

(âi),i=1,2,3,4.
It can be easily proved that the interpolation defined above is properly posed, and the

interpolation function may be written as:

v̂ =

4
∑

i=1

N̂1i(ξ, η)v̂i +

4
∑

i=1

N̂2i(ξ, η)v̂iξ +

4
∑

i=1

N̂3i(ξ, η)v̂iη , ∀v̂ ∈ P̂ , (2)

where

N1i(ξ, η) =
1

4
(1 + ξiξ)(1 + ηiη)(1 +

ξiξ + ηiη

2
− ξ2 + η2

2
), i = 1, 2, 3, 4,

N2i(ξ, η) = (1 + ξiξ)
2(1 + ηiη)(1 − ξiξ)(−ξi)/8, , i = 1, 2, 3, 4,

N3i(ξ, η) = (1 + ξiξ)(1 + ηiη)2((1 − ηiη)(−ηi)/8, i = 1, 2, 3, 4,

(ξ1, ξ2, ξ3, ξ4) = (−1, 1, 1,−1), (η1, η2, η3, η4) = (−1, 1, 1,−1).

Then we define the interpolate operator of ACM’s element as

Π̂ : H4(K̂) → P̂ , Π̂v̂ =
4

∑

i=1

N̂1i(ξ, η)v̂i +
4

∑

i=1

N̂2i(ξ, η)v̂iξ +
4

∑

i=1

N̂3i(ξ, η)v̂iη (3)

and

Π : H4(K) → P̂ ◦ F−1
K , Πhv = (Π̂v̂) ◦ F−1

K .


