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Abstract

In this paper, we describe a method to solve large-scale structural optimization prob-
lems by sequential convex programming (SCP). A predictor-corrector interior point method
is applied to solve the strictly convex subproblems. The SCP algorithm and the topology
optimization approach are introduced. Especially, different strategies to solve certain linear

systems of equations are analyzed. Numerical results are presented to show the efficiency of
the proposed method for solving topology optimization problems and to compare different
variants.
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1. Introduction

The method of moving asymptotes (MMA) was introduced by Svanberg [7] in 1987. To prove
global convergence and to stabilize the algorithm, Zillober [8] added a line search procedure
and called it the sequential convex programming (SCP) method. Both methods are proved
to be efficient tools in the context of mechanical structural optimization, see for instance the
comparative study of Schittkowski et al. [3], especially since displacement dependent constraints
are approximated very well. But also optimization problems from other areas can be solved
very efficiently in certain situations [5]. In a recent paper of Zillober et al. [12], it is shown how
very large scale optimal control problems with partial elliptic equations can be solved after a
full discretization.

Zillober [9] extended the approach to a generally applicable mathematical programming
framework, and in [10] the predictor-corrector interior point method for solving the convex
nonlinear subproblems was introduced. Moreover, a Fortran-code with name SCPIP [11] was
developed which is in practical use in many academic and commercial applications.

The main focus of this paper is to show how the SCP method can be applied to solve large-
scale topology optimization problems. These problems can become extremely large and possess
dense Hessians of the objective function. The mathematical structure is easily analyzed and a
large number of scalable test problems is obtained in a straightforward way.

∗ Received February 4, 2004.
1) This work was mainly done while the first author was visiting the University of Bayreuth, and was

supported by the Chinese Scholarship Council, German Academic Exchange Service (DAAD) and the National
Natural Science Foundation of China.



492 Q. NI, CH. ZILLOBER AND K. SCHITTKOWSKI

To describe the SCP method, we consider the general nonlinear programming problem

min f(x), x ∈ IRn,

s.t. hj(x) = 0, j = 1, ..., meq,

hj(x) ≤ 0, j = meq + 1, ..., m, (1.1)

xi ≤ xi ≤ xi, i = 1, ..., n.

The functions f and hj , j = 1, . . . , m, are defined on X := {x |xi ≤ xi ≤ xi, i = 1, . . . , n}, are
assumed to be continuous in X and at least twice continuously differentiable in the interior of
X . The feasible region is assumed to be non-empty.

The objective function of (1.1) is approximated by a uniformly convex function, inequality
constraints by convex functions, and equality constraints by linear functions. Thus, (1.1) is
replaced by a separable, convex, and nonlinear subproblem which is much easier to solve.
Numerical results show the advantages of an interior point method for solving the subproblem.
It is possible to reduce the size of the internally generated linear systems, where the major
part of the computing is spent, to m, which is favorable when m is small compared to n as
is the case for topology optimization problems. Another possibility is to reduce the size of
linear subsystems to n. A small number of variables and a large number of constraints is a
typical situation for many sizing problems in structural optimization. Moreover, there is a third
possibility to formulate linear systems with n + m equations and variables, by which special
sparsity patterns can be exploited. The first two approaches will be compared by numerical
tests.

The outline of the paper is as follows. In Section 2 the SCP method is formulated and the
SCPIP code is briefly introduced. Topology optimization, our main source for generating test
problems, is described in Section 3. Section 4 contains numerical results.

2. The Sequential Convex Programming Method

Similar to most other nonlinear programming algorithms, the SCP method replaces problem
(1.1) in the k-th step by a subproblem

min fk(x), x ∈ IRn,

s.t. hk
j (x) = 0, j = 1, ..., meq,

hk
j (x) ≤ 0, j = meq + 1, ..., m, (2.1)

xi
′ ≤ xi ≤ xi

′, i = 1, ..., n.

If we define

φi(g, z, y, x) =
∂g(y)

∂xi

(

(zi − yi)
2

zi − xi

− (zi − yi)

)

, (2.2)

where g : IRn −→ IR, x, y, z ∈ IRn with x = (x1, . . . , xn)T , y = (y1, . . . , yn)T , and z =
(z1, . . . , zn)T , the approximation of the objective function fk in the k−th step is defined by

fk(x) = f(xk)+
∑

i∈Ik
+

(

φi(f, Uk, xk, x) + τk
i

(xi − xk
i )2

Uk
i − xi

)

+
∑

i∈Ik
−

(

φi(f, Lk, xk, x) + τk
i

(xi − xk
i )2

xi − Lk
i

)

,

where Ik
+ = {i : ∂f(xk)

∂xi
≥ 0}, Ik

−
= {1, . . . , n} \ Ik

+. Inequality constraints are approximated by


