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Abstract

In this paper, some new results on the estimations of bounds for determinant of
Hadamard Product of two H-matrices are given. Several recent results are improved and
generalized.
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1. Introduction

Let Rm×n be the set of all m × n real matrices and A = (aij) and B = (bij) ∈ Rm×n. The
Hadamard product of A and B is defined as an m×n matrix denoted by A◦B : (A◦B)ij = aijbij .
|A| is defined by (|A|)ij = |aij |.

We write A ≥ B if aij ≥ bij for all i, j. A real n × n matrix A is called a nonsingular
M-matrix if A = sI −B satisfies: s > 0, B ≥ 0 and s > ρ(B), where ρ(B) is the spectral radius
of B. Let Mn denote the set of all n × n nonsingular M-matrices. Suppose A = (aij) ∈ Rn×n,
its comparison matrix µ(A) = (mij) is defined by

mij =

{

| aij |, if i = j,

− | aij |, if i 6= j.

A real n × n matrix A is called an H-matrix if its comparison matrix µ(A) is a nonsingular
M-matrix. Hn denotes the set of all n × n H-matrices. Let A ∈ Rn×n. Ak denotes the k × k

successive principal submatrix of A.
In [1], Yao-tang Li and Ji-cheng Li gave an estimation of bounds for determinant of Hadamard

product of two H-matrices recently as follows:

Theorem[1,Theorem6]. Let A = (aij) and B = (bij) ∈ Hn,
n
∏

i=1

aiibii > 0. Then

det(A ◦ B) ≥

(

n
∏

i=1

bii

)

det(µ(A)) +

(

n
∏

i=1

|aii|

)

det(µ(B)) ·
n
∏

k=2

k−1
∑

i=1

∣

∣

∣

∣

aikaki

aiiakk

∣

∣

∣

∣

= Wn(A, B).

(1)

In this paper, we will improve this result and generalize Jian-zhou Liu’s main results on
M-matrices in [2] to H-matrices.
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2. Some Lemmas

In this section, we will give some lemmas that shall be used.

From the definitions and [2, Lemma 3], the following two lemmas are obtained immediately.

Lemma 1. If A ∈ Hn, Ak is the k × k successive principal submatrix of A, then Ak ∈ Hk.

Lemma 2. If A = (aij) ∈ Hn, then

n
∏

i=1

|aii| ≥ |akk| det[µ(A(k))] ≥ det[µ(A)] ≥ 0, k = 1, 2, · · · , n, (2)

where A(k) ∈ R(n−1)×(n−1) is the principal submatrix of matrix A obtained by deleting row and

column k of A.

Lemma 3. If A and B ∈ Hn, then

|akk|
det[µ(Bk)]

det[µ(Bk−1)]
−

det[µ(Ak)]

det[µ(Ak−1)]

det[µ(Bk)]

det[µ(Bk−1)]

≥
det[µ(Bk)]

det[µ(Bk−1)]

k−1
∑

i=1

∣

∣

∣

∣

aikaki

aii

∣

∣

∣

∣

, k = 1, 2, · · · , n. (3)

Proof. By Lemma 1,

Ak =

(

Ak−1 A
(k−1)
12

A
(k−1)
21 akk

)

, Bk =

(

Bk−1 B
(k−1)
12

B
(k−1)
21 bkk

)

∈ Hk.

Therefore,

diag(|a11|, · · · , |ak−1,k−1|) ≥ µ(Ak−1)

and

[µ(Ak−1)]
−1 ≥ diag(|a−1

11 |, · · · , |a−1
k−1,k−1|) > 0.

So,

|A
(k−1)
21 |[µ(Ak−1)]

−1|A
(k−1)
12 | ≥ |A

(k−1)
21 |diag(|a−1

11 |, · · · , |a−1
k−1,k−1|)|A

(k−1)
12 |

=
k−1
∑

i=1

∣

∣

∣

∣

aikaki

aii

∣

∣

∣

∣

≥ 0, (4)

det[µ(Ak)] = detµ

(

Ak−1 A
(k−1)
12

A
(k−1)
21 akk

)

= det

(

µ(Ak−1) −|A
(k−1)
12 |

−|A
(k−1)
21 | |akk|

)

= det

(

µ(Ak−1) 0

0 |akk| − |A
(k−1)
21 |[µ(Ak−1)]

−1|A
(k−1)
12 |

)

= det[µ(Ak−1)] · (|akk| − |A
(k−1)
21 |[µ(Ak−1)]

−1|A
(k−1)
12 |).

(5)


