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Abstract

This paper is concerned with the stability of theoretical solution and numerical solution
of a class of nonlinear differential equations with piecewise delays. At first, a sufficient
condition for the stability of theoretical solution of these problems is given, then numerical
stability and asymptotical stability are discussed for a class of multistep methods when
applied to these problems.
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1. Introduction

In recent years, many authors discussed the stability of numerical methods for the solution of
delay differential equations(DDEs) (see, e.g., [1, 2, 3, 4, 10] and their references) with constant
delay. Recently, H.Tian [9] has given the exponential asymptotic stability of singularly per-
turbed delay differential equations with a bounded lag, and this type stability can be applied to
general delay differential equations with a variable lag. However, the stability results of numer-
ical methods for differential equations with variable delays are much less. In 1997, Zennaro[7]
first investigated asymptotical stability of nonlinear delay differential equations(DDEs) with a
variable delay, and gave the stability result of Runge-Kutta methods applied to this systems.
In 1984, Cooke et al [6] described the existence, asymptotic behavior, periodic and oscillating
solutions of the differential equations with piecewise constant delays. More results can also be
found in [8] about differential equations with piecewise continuously variable arguments. In [5],
the stability of θ-methods has been studied by Zhang Changhai et al, which is based on the
linear problem

{

y′(t) = ay(t) + by([t]), t ≥ 0,
y(0) = y0,

where a, b denote real constants and [·] denotes the greatest integer function. In this paper,
we further investigate the stability of the theoretical solution and numerical solution of a class
of initial value problems in nonlinear differential equations with piecewise delays. In section 2,
we fix our attention on the stability of the theoretical solution of the problems. In section 3,
we analyze the stability and asymptotical stability of a class of linear multistep methods when
applied to the problems. Our results are further verified by the numerical experiment in section
4.
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2. Test Problems

Let 〈·,·〉 be an inner product in CN and ‖·‖ the corresponding norm. Consider the following
initial value problem in nonlinear differential equations with piecewise delay:

{

y′(t) = f(t, y(t), y([t])), t ≥ 0,
y(0) = y0,

(2.1)

where [·] is the largest-integer function, and f : [0, +∞) × CN × CN −→ CN is a given
continuous mapping. Assume that there exist continuous bounded functions α(t) and β(t) on
the interval [0, +∞), which satisfies the following conditions:

α(t) ≤ 0, α(t) + β(t) ≤ 0 ∀t ≥ 0, (2.2)

such that
{

Re < u1 − u2, f(t, u1, v) − f(t, u2, v) >≤ α(t)‖u1 − u2‖
2, ∀t ≥ 0, u1, u2, v ∈ CN

‖f(t, u, v1) − f(t, u, v2)‖ ≤ β(t)‖v1 − v2‖, ∀t ≥ 0, u, v1, v2 ∈ CN ,

(2.3a)

(2.3b)

and that the problem (2.1) has a unique true solution y(t) on the interval [0, +∞).
In order to discuss the contractivity and asymptotic stability of (2.1), we introduce the

perturbed problem
{

z′(t) = f(t, z(t), z([t])), t ≥ 0,
z(0) = z0,

(2.4)

and assume that the problem (2.4) has a unique true solution z(t).

Theorem 2.1. If the mapping f satisfies the condition (2.3) with (2.2), then we have

‖y(t) − z(t)‖ ≤ ‖y0 − z0‖ ∀ t ∈ [0, +∞) (2.5)

Proof. Define Y (t) := ‖y(t) − z(t)‖2 =< y(t) − z(t), y(t) − z(t) >. Noting the conditions
(2.2) and (2.3), and Cauchy-Schwartz inequality, we have

Y ′(t) = 2Re < y(t) − z(t), y′(t) − z′(t) >
= 2Re < y(t) − z(t), f(t, y(t), y([t])) − f(t, z(t), y([t])) >
+ 2Re < y(t) − z(t), f(t, z(t), y([t])) − f(t, z(t), z([t])) >
≤ 2α(t)Y (t) + 2β(t)‖y(t) − z(t)‖‖y([t]) − z([t])‖
≤ 2α(t)Y (t) + β(t)(Y (t) + Y ([t]))
= α(t)Y (t) + (α(t) + β(t))Y (t) + β(t)Y ([t])
≤ α(t)Y (t) + β(t)Y ([t]).

Let A(x) :=
∫ x

0 α(t)dt, for every t0 ≥ 0, t ≥ t0, we have
∫ t

t0

(e−A(x)Y (x))′dx ≤

∫ t

t0

β(x)e−A(x)Y ([x])dx. (2.6)

Hence

Y (t) ≤ Y (t0)e
A(t)−A(t0) − eA(t)

∫ t

t0

α(x)e−A(x)Y ([x])dx.

For the case m ≤ t ≤ m + 1 with integer m ≥ 0. Let t0 = m, we have

Y (t) ≤ Y (m)[eA(t)−A(m) − eA(t)

∫ t

m

α(x)e−A(x)dx]

≤ Y (m)[eA(t)−A(m) + 1 − eA(t)−A(m)] ≤ Y (m). (2.7)

By iterating, the (2.5) is true.
Modifying the conditions of theorem 2.1 further, we can obtain the following conclusion.


